Boston Medical Library in the Francis A. Countway Library of Medicine ~ Boston

 Presented by Horrill \&tymaw, in. 10 PROPERTY OF THE CAMBRIDGE PUBLIC LIBRARY, Deposited in the Boston Medical Library, by order of the Trustees.

Date APR 881904

$$
\pi=\operatorname{din} d A^{\prime} x=
$$

-3
1 mion mir

9

$$
\dot{3}-1+112 x+2+10+2
$$

 3

A

TREATISE

 ON.THE
E Y
 E,

The Manner and Phenomena of Vision.

IN TWO VOLUMES.

By WILLIAM PORTERFIELD, M.D. Fellow of the Royal College of Phylicians at Edinburgh.

V O L. I.

- Whence is it that Nature doeth nothing in vain, and wherice arifes all that Order and Beauty we fee in the World?How came the Bodies of Animals to be contrived with Co mulch Art, and for what Ends were their Ceveral. Parts? Was the Eye contrived without fill in Optics, and the Ear witbout knowledge of Soimds? \&c. Newton's Opticks, Query 28.
$E \quad D \quad I N B \quad U \quad R \quad G \quad H:$
Printed for A. Miller at L.ondon. and for G. Hamele ten and J. Balfour at Edinumgh. M,DCC,LIX.

$$
\therefore 160 \times 8 \text { is } 20
$$

$$
\begin{aligned}
& (1) \quad-\quad+\quad n
\end{aligned}
$$

$$
\begin{aligned}
& \text { 291C shank c:ads } \\
& \text { Whanll hlathorlatif }
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{ll}
14 \\
\text { it }
\end{array} \\
& \mathrm{CR}=\square+8+4=0 \tag{0}
\end{align*}
$$

T 0

Sir Alexander Dick

 of Prestonfield, Baronet, PRESIDENT,$$
A N D T O
$$

The COUNCIL and FELLOWS OF THE

Royal College of PHYSCIANS
AT
$\begin{array}{lllllllll}E & D & I & N & B & U & R & G & H\end{array}$

This Treatise on the Eye, $\mathcal{U}^{\circ} c$. is moft humbly Dedicated,

By their moft Obedient Servant, WILLIAM PORTERFIELD.

xora. sutigntrath पie

$3+142+1+x+30$
 \therefore AT it

311480

©

4

THE

CONTENTS

OF THE

FIRSTVOLUME。

BO OK I.

Of the Parts fubfervient to the Eye.

C HAP. I.

Of the Supercilia or Eye-brows.

Sect.

Pay.

1. THE Eye a curious and useful Organ, I
2. It is either external or internal, 3
3. The first of the external Parts, the Eyebrows,
4. Man alone provided with Eyebrows, and
5. The Callow, bar Something analogous to 4 Eyc-brows, and why,
6. The Eyebrows are prominent, and toby, 5 Vol. I.
a
7. They

SECT.
 7. They are corrugated and depreffed by a MuScle,
 8. The Advantages of this Motion, 5
 9. The Eye-brows pulled up by the Frontals, 7

C HA P. II.

Of the Palpebre and Cilia.

SECT.

Pay.

1. The Palpebræ what, and why fo called, 8
2. Composed of five Membranes and a Carsilage,
3. The firft two Membranes pierced by the Cilia, the Cilia why fo called, and of what USe,
4. The other Membranes of the Eye-lids,
5. The UTe of the Eye-lids, 16
6. Our Eyes may Suffer from ftrong Light, and Inftances given of this, I 6
7. Cruftacious Animals deprived of Eye-lids, and why,
8. Moot Fib es want Eyelids, and why, 20 9. Flounders, Soles, and other flat Fifhes, have

Eye-lids, and why,
10. Infects have fomething analogous to Eyelids, and why,
Sect.II. Vifion not intercepted by the quick Motionof the Eye-lids, and why,23
12. The Mufcles of the Eye-lids defcribed, and.their Ufe explained,24
13. The Eye-lids in different Animals movedifferently, and why,27
14. Animals that frequent Bu/bes and longGrafs have another Eye-lid, calledMembrana Nictitans,28
15. The UJe of this Eye-lid, 29
16. Men and Apes the only terreftrial Creatures that want this Eye-lid, and why, 30
17. Fihes alfo want this Eyc-lid, except fuchas come out of the Water, and flayfome time upon Land, as the Sea-Calf,and woly, 3 I
18. The Structure of this Eye-lid and the Me- chani m by which it is moved, 31
19. It is different in different Animals, 36
C H A P. III.
Of the Glandula Lachrymalis.
Sect.

1. The Lacbrymal Gland, what, Pag. 39
2. Its Situation and Excretorics, 39
Sect.
Mag,
3. Its Use is to feparate the Tears for waffling and cleaning the Cornea, 40
4. This Liquor upon particular Ociafions is Squeezed out in greater plenty by the Contraction of the orbicular Muscle of the Eye-lids; and why,

C HAP. IV.

Of the Pinta Lacbrymalia, Saccus Lacbrymalis, Ductus Nafalis, and Coruncula Lachrymalis,

SECT.

I. All thee Parts known to Galen,
2. Shortly defcribed,
3. The Coruncula Lachrymalis in Brutes is large, and of a glandulous Subfance furnijbed with Excretorics, but not. 0 in Man,
4. The Mechanifm by which the Tears are made to form into the Nope, 44
5. The USe of the Coruncula Lachrymalis, 47
6. The Lachrymal Canals analogous to Capillary Siphons,
7. Some Phenomena accounted for, 49

CONTENTS

B O O K II.

Of the Globe or Body of the Eye.

CHAPI.

Of the Situation of the Eye.

Sect.

1. The Eye what,

Pag.
2. Situated in the Head, and why,
3. The Extent of a Man's Proppect deduced from the Height of the Eye,

$$
54
$$

4. This varies according to the various Confitutions of the Air,
5. Another Reafon why the Eyes are fituated in the Head,
6. Why fituated in the Fore-part of our Head, rather thain on the Top, or behind, 58

C H A P. II.

Of the Connection of the Eyes:

SECT.

F. What chiefly connects the Eyes to their Orbits, is the Membrana Conjunctiva or Adnata,

Sect.

2. This Membrane fhortly described,
3. Is covered with another Membrane from the Eye-lids,

GI
4. They are both of a White Colour, and why,
5. They fell excefively in Ophthalmias, but without Danger, unless the inward Parts of the Eye be aldo affected,

62
6. They bare a tranfparent Aponeurofe covering them, which extends over the whole Cornea,
7. The Tunica Tendinea defcribed, $\quad 64$

C HAP. III.

Of the Form of the Eye.

SECT.

1. The Eye either Spherical or Spheroidal, 65
2. The Benefits arifing from this Figure, 66

$$
\mathrm{CH} \text { AP. IV. }
$$

Of the Number of the Eyes.
SECT.
Pay.
I. The Number of the Eyes never less than two, but in forme Animals more, 69

Sect.
2. One End of two Eyes is, that Objects may appear brighter and Jronger, 70
3. Experiments for proving this, and deter-
mining to what degree this Excess of Brightne ss amounts,
4. Another End of two Eyes is, that one may
officiate after the other is loft, 76

Pay.

70
5. A third End is to afjift us in judging of

Diftances, and bow this is perform-
ed,
76
6. Many Animals have more than two Eyes, and why,

CH A P. V.

Of the Motions of the Eye.
Sест. Fag.

1. The Motions of the Eye are external or internal,
2. The external Motions performed by fix Muscles, whereof four are freight, and two oblique,
3. The four freight Muscles defcribed,
4. Their Action explained,
5. The oblique Muffles described, and their Action explained,
6. Mr. Perrault's Opinion refuted, 86

Sect.

Pag.
7. Their UJe when both act together inquired into,
8. In the Pike, the oblique Mufcles decuffate one another in form of a Crofs, and why,
9. Dogs have a fifthright Mufcle that moves the Trachlea of the Obliquus Superior,
10. The Mufculus Sufpenforius peculiar to Quadrupeds defcribed,
I r. Its UJé inquired into, 9 a
12. Reflections on what bas been faid, and firt, the Provifion made by Nature for the Immobility of the Head and Eyes in Spiders and Flies,
I 3, 2dly, The Provifon made for the Security of the Eyes in Snails,
14. Moles are not blind, as fome bave imagined, but have fmall Eyes, which they can protrude and retraEt at pleafure, and why,
15. In Man, Sheep, Oxen and Dogs, the Eyes move uniformly, but in Fifhes, Birds, the Hare, Chamelion, \&x. they are moved differently, 100
16. The final Caufe of this uniform Motion is, firt, that the Sight may be rendered more ftrong,

SECT.
Mag.
17. 2dly, That we may judge better of the Diftance of Objects, and how we judge thus, 104
18. Some Inferences from this Doctrine, 106
19. Reafons why the fingle Appearance of Objects are by dome thought to depend on the uniform Motions of our Eyes, . IO9
20. There Reafons not conclusive, II 2
21. The efficient Cause of the uniform Motion of our Eyes, not the Union of the optic Nerves,

II 2
22. Nor of the Nerves called Oculorum
Motorii,
23. The true Cause of this uniform Motion depends on Cuftom and Habit.

II 4

C HA P. VI.

Of the Fabric and Structure of the Eye.

Sect.

Tag.

1. The better to explain the Eye, it is neceffarl, first of all, to give a general Idea of its Structure,
2. The proper Tunicles or Coats of the Eye, fo many Productions of the three different Substances of the optic Nerve, and therefore three in Number, 120 Vols. I。
b

CONTENTS.

SECT.
3. A general Idea of the firft Coat, 121
4. - of the fecond Coat, 123
5. - of the third Coat, I24
6. The Humours of the Eye three in Number, the Aqueous, Crystalline, and Vitreous; they are all clear and tranpparent, and why, 125
7. When tinged with any Colour, we are not fenfible of any Change of Colour in Objects, unless the Tincture be confiderable, and happen on a Judden, and why,
8. We therefore can never be certain but the Colours of Objects are changed, and that they are now feen of a different Colour from what they appared formerly,
9. Experiments hewing that Objects are Seen of different Colours, according as they are viewed with the right or Left-eye,

128
10. The Eye to which Objects appear the moot ruddy the beet, and why, 131
11. Ageneral Idea of the aqueous Humour, I 32
12. of the Crystalline, 134
13. Ageneral Idea of the vitreous Humour, 135

I4. - of the Ligamentum $\mathrm{Ci}-$
liare,

$$
136
$$

15. This

CONTENTS.

Sect.

15. This general Idea of the Eye, explained in a Figure,

CH A P. VII.

Of the Sclerotica and Cornea.

SEct.

Pay.

1. This Coat a Continuation of the outward Coat of the optic Nerve,
2. Its being fo little fenfible, no solid Ob jection to this,
3. Another Objection taken from the bonny Hardness of this Tunicle in Birds and Fifbes,
4. This Objection answered, 140
5. This external Coat compofed of Fibres that run in different Directions, I4I
6. It may be Separated into many Plates, especially in the Cornea,
7. Objections to this answered,

141
8. In forme Creatures this Coat is fort, flexible and yielding, in others hard, bonny and inflexible,

143
9. It produces a glairy Coat before Death, which covers all the Cornea, and which is a certain Sign of a speedy Diffolution,

SECT.

Pag.
10. Some Meafures of the Cornea and ather

$$
\text { Parts of the Eye, } 146
$$

11. Inferences drawn from thefe Meafures with refpect to Cataracts,
12. Its Blood-veffels and Nerves, 149

C H A P. VIII.

Of the Choroides and Uvea.

SECT.

1. Several Particulars with regard to this Coat
2. It is apaque in all its Parts, and covered
with a black Pigment, but not equal-
ly fo over all,
15 I
3. In all Animals the convex Surface of the

Choroides is always covered with this Pigment, but in many Animals its concave Side is of a Splendid blew, green, yellow, pearl, or other bright Colour,
4. The Choroides is not attached to the

Sclerotica, but by the Veffels it receives from it, except at its Edge, where it forms the Uvea,

$$
\begin{array}{r}
152 \\
\text { 5. Its }
\end{array}
$$

CONTENTS.

SECT.

Pag.
5. Its Fibres defcribed, fome of which form the mulcular Fibres of the Ligamentum Ciliare, others the longitudinal Fibres of the Uvea, 152
6. The Sphincter Pupillæ defcribed, i53
7. The Uvea not convex, but plain,

154
8. Can be eafily feparated from the Choroides
in Co.zws, but not in Man, 155
9. Its Blood-veffels and Nerves, 156
10. The Pupil has no fixed Meafure, but varies with the Light that enters the Eye, and why,
11. It alfo contracts at the near Approach of fmall Objects,
12. Plempius not the firft who obferved this Motion, as Dr. Why tr affirms, 157
13. The Reafon of this Contraction, 157
14. It feldom takes place when Objects are at a Diftance, and why, 159
15. In Cbildren this Apperture is more di- 160
16. In elderly Perfons it is yet fmaller than in Adults,
17. Experiments proving that the Contraction of the Pupil depends more upon the Strength of the Light, than upon the Senfation of Confulion in the Object, 162 48. The Reafon why the Pupil is large in Children, and grows fraller and fmaller continually,

$$
163
$$

19. This

Sect.
Pas.
19. This Theory confirmed from the State of the Pupil in the Exophthalmia and Microphthalmia, 166
20. A Second Reafon of this Phænomenon, 167
21. A third Reafon of this Phænomenon, 168
22. Dr. Why t T's Solution of this Phænomenon rejected,

170
23. The Pupil large in fort-fighted Perfons, but faller when the Sight is perfect, and yet more fo in the prefoytical or weak Sight, and why,

176
24. A Second Reajon of this Phenomenon, 177
25. It is aldo large in fuck as are of a dark Complexion, and have black Eyes, but is finaller in tho fe who are fair, and have light blew Eyes, and why, 178
26. Several Phænomena thence accounted for, 179
27. In bollow-eyed People it is alfo large, but finaller when the Eyes are prominext, and why, 180
28. Several Phænomena thence accounted for,

IB
29. The Pupil larger or faller according to the different States and Conditions of the Coats and Humours of the Eye, 182
30. A Miftake of Maitre-JEAN refused,

CONTENTS.

xvii

Sect.

Pas.
31. The Mydriafis and Myofis not Difeafes, but Symptoms, and what their Caufe, 184
32. In different. Animals the Pupil of gifferent Forms,

C HAP. IX.

Of the Retina and optic Nerve.

Sect.

Pag.

1. The Retina and optic Nerve defcribed, 186
2. This Nerve is not hollow and pervious, as Galen maintained,
3. Various Opinions concerning the Manner in which our optic Nerves are conjoined,

189
4. They are united only by a close Cohesion, without any Decuffation, Interféction, Mixture or Confiufion of Substance, 19I
5. The chief Reafon for this Conjunction, according to Galen, is, that Objests Seen with both Eyes may not appear double,
6. This Opinion refuted, 193
7. Galen's other Reafon for this Conjunction is, that the vifive Spirits may all flow into the one. Eye for Jrengthening its Sight, when the other Eye is fort or loft,

xviii \quad CONTENTS.

SECT.

8. This Opinion alfo refuted,
9. An Apology for Galen's Miftake in this Matter,
10. Two other Reafons for this Corigunction, 202

C H A P. X.

Of the aqueous Humour.

Sect.

1. Several Particulars with regard to this

Humour mentioned,
2. By what Means kept pure and tranf-
parent,
205
3. This illuftrated by what bappens in

Faundices,
207
4. It becomes thicker, more muddy, and lefs tran/parent, as we advance in Tears; whence the Sight of elderly Perfons cann never be perfected by Spectacles, tho' of a due Degree of Convexity, 208
5. More Particulars with regard to this

Humour,
209
6. By exbaling thro' the Pores of the Cornea, it diminifhes greatly in a very little Time,

210
7. This Exhalation the clief Caufe of the

Contraction of the Pupil after Death, 210

CONTENTS.

*is
Sect.
8. This Contraction of the Pupil after Death ${ }^{n} 0$ Proof that this is its natural State, 212
9. Because it proceeds from a Diminution of the aqueous Hunrour, as is here clearly proved,
10. How this Diminution caufes a Contraction of the Pupil explained, 216
11. The aqueous Humour circulates, and wholly,
12. This Circulation confirmed, by the Regeneration of the aqueous Humour after it has run out by a Wound in the Cornea,
219
13. The Manner of this Circulation ex-
planned,
14. And confirmed by analogous Cafes; 224
15. The Cause of the Hydrophthalmia. 225

CH AP. XI 。

Of the Cryftalline Humour.

Sect.

Fag.

1. The Crystalline not a congealed Humour, but a Solid Part, made up of thin Lamine x or Plates, and the fe Plates of one giggle Fibre, wound in a moot flupenduous Manner,
Vet. I.
ε
2. Outwardly

CONTENTS.

SECT.

Pag.
2. Outwardly it is like a thick Gelly, but towards the Centre as confiftent as hard Suet,
3. At different Ages it is of different Confiftencies,
4. Is of different Confiftencies in different Animals, and in Fib its central Part is almoft as hard as Horn, who are therefore faid to have a double Cryfalline,
5. About the 25 th or 30 th Year of our Age, the Cryftalline begins to become rellow, which 1 ellownels increafes gradually, infomuch that in old Age it fometimes refembles a beautiful Piece of yellow Amber,
6. The Figure of the Cryftalline different in different Animals,

230
7. Its Convexity behind and before different, both meafured,

231
8. The Denfity of this Humour inquired into, 23 I
9. Its Denfity above that of the oiker Humours being but fmall, it it not of fuch great UJe in Vifion, as is commonly believed,

232
10. Some Animals have been made to fee, after that all the Humours of the Eye had been expreffed by a Wound made in the Cornea, and the Reafon of this, 233 11. Maitre-

CONTENTS.

SECT

11. Maitre-Jean's Experiment to prove the great Denfity of the Cryftalline refuted,
12. This Lens has no vifible Attachment or Communication with any Part of the Body,
13. The Ufe of its Capfule and of the cryftalline Liquor contained in it,

C H A P. XII.

Of the Vitreous Humour.

SEct.

Pag.

1. Several Particulars with refpect to this Humour and its Coat,
2. The Dimple in its Fore-part, and the con-. vex Annulus or Ring round this Dimple defcribed, and their Ufe explained,
3. Experiments to hew that this Humour is compofed of folid Parts, and for enabling us to form Some probable Opinion with regard to their Difpofition, 242
4. Inferences drawn from the \int_{0} Experiments refpecting the Structure of this Humour, 244
5. The Denfity of this Humour inquired into,

C HAP.

CONTENTS.

C. HA P. XIII,

Of the Ligamentum Ciliare.

Sect.

Page,
I. The Arch it forms in paling over the Annulus of the vitreous Humour, the chief Thing remarkable, that has not been already noticed in the general Inca of the Eye.

CH A P. XIV.

Of the Marfuptium Nigrum, peculiar to Birds.
Sect.

Fag.
247

1. This Membrane deforibed,
2. Is muffular, but covered with more or clefs of a black Pigment, in proportion as Birds fy more or lees high,
3. It is fometimes called the Pecten, from its Resemblance to a Comb in Some Animals, and in the Magpy, and Some other Birds, it plainly appears musculous towards its Bottom,

BOOK II.

Of Vifion.

CH A PI.

Of the Nature and Properties of Light.

SECT.

Fag.
I. Light not a Quality, as Aristotle le maintained, but a material Subftance,252
2. The Particles of which it confitts, are emitted from the luminous Bodies them elves,
3. Thee Particles are extremely fall, 258
4. Their Motion is extremely fwift; this

Swiftness determined,
5. The 5th Property of Light, its Reflexibility, in which it obferves the fame Laws that other Bodies do in their Reflexions, 261
6. This Reflexibility known to the Antients, 264
7. A Difficulty cleared up, 264
8. Another Property of Light, its Refran-
gibility,

SECT.

Pay.
9. This Refrangibility aldo known to the Antients, but they made $n 0$ Progress in Dioptrics, nor bad they any Knowledge of Optic-glaffes,
10. The Antients ignorant of the Laws of Refraction; the fe firft difcovered not by Des Cartes, as many have magined, but by Snellius,
II. Experiments proving that Light is refracted,
12. An Experiment from which the Laws of Refraction may be difcovered,

271
13. Corollaries from the above Experiment, in which the fe Laws are determined, 275
14. The Degree of Refraction in Glass, Water, and the Humours of the Eye, determined,
I5. No Author has camined the Refraction of the human Crystalline cxperimentally,
10. This determined from the Specific Weight of this Humour alone, and Shewn to be exceeding final,
17. The Meafures of Refraction above mendtioned accurately true only with relect to the Rays that have a middle Degree of Refrangibility, $\quad 291$
18. The Reflection and Refraction of Light, proceeds from the repulfive and attractive Powers of Bodies,

CONTENTS.
Sect.
19. This attractive and repulfive Power, by which Bodies and Light act upori each other at a Diftance, not mirachlous or extraordinary, but very conformable to the usual Course and Tenor. of Nature,
20. The fe Powers demonftrated by NEWTON's Experiments and Obfervalions,
2 1. Whence it follows, that Light may aldo be emitted by the Power of Repulfion, and bow,
22. This attractive and repulfive Power explained,
23. How they operate in causing Reflections and Refractions,
24. A Corollary from what hath been said,
25. All the Phænomena of Reflection clearly deduced from the Attraction and Repulfion of Bodies,
26. All the Phænomena of Reflation deduce and explained from the fame Caul,
27. By what Law this attractive and epullive Power operates, 303
28. The last Property of Li the different Refrangibit flexibility of its Rays,
29. This wonderful Property fir difcovered by Newton in the Year 1666, and the Disputes be bad concerning it, 323
30. A Sketch of bis Doctrine on this Head,
31. This Difference of Refrangibility in the Particles of Light argues a difference in their Magnitude,
32. Whence we may fee why Reds are more offensive to the Eye than any other Colour,
33. An Experiment proving that the Rays are of different Magnitudes,
34. This Doctrine agreeable to NewTON,

345
35. Mr. Melville l's Objections anfwered, 345

CH A P. II.

Of the Manner of Vifion, and the Ufa of the Several Humours of the Eye.

SECT.

Mag.

1. Various Opinions concerning the Manner of Vifion,

349
2. A Lemma premifed for understanding bow Vifion is performed,

$$
\begin{aligned}
& 352 \\
& \text { The }
\end{aligned}
$$

SECT.

3. The Reprefentation of Objects in a dark Room by Meairs of a Lens fimilar to what bappens in our Eyes for caufing Vifion,
4. This further illuftrated, and the Ufe of the feveral Humour's of the Eye explained,
5. Porta the firft who explained Vifion from Pictures entering the Eye, but bis Doctrine lame and defective,
6. Kepler the fir t who made the grand

Difcovery about the 1600 , and fherwed by his Geometry, bow thefe Pictures are made diftinct by the Refraction of the Humours, and thence explained the Ufe of Spectacles, and the erect $A p$ pearance of Objects, notwithftanding the Inverfion of their Pictures, 360
7. The Mind does not perceive in the Retina, but in the Senforium,
8. This further illuftrated, by confidering Vifion by Reflection and Refirattion, 365
9. Dr. Whyt t's Hypothefis of the Soul's being prefent with every Part of the Body, and of its exercifing aifferent Faculties in different Parts, refuted, 367
10. Tho' the Pictures on the Retina are not
feen, yet there is a Connection between Vifion and the fe Piefures; which Connection is here explained,
Vol. I.
d

1. Kifion
xxviii CONTENTS.
Sect.
II. Vifion never absolutely diftinct, because the Pictures on which it depends are never absolutely diffinct,

374
12. The Sphericaluefs of the Figures of the refracting Humours one Cause of this Undiftinctne/s, and bow,

374
13. The Confusion arising from this Cause determined from a Theorem of Newton
14. Is fo fall as to be inferfible, $\quad 378$
15. But the Confusion arifung from the different Reframgibility of the Rays, is many hundred Times greater, $\quad 378$
16. Yet Objects appear pretty difinct both tbro' Telefopes and to the naked Eye, and why,
17. This Doctrine applied more particularly to the Eye,

CH AP. III.

Of the Change that is made in the Eye, in order to fee diftinctly at different Difrances, and of the Ufe of the Ciliary Ligament in producing this Change. .

Sect.

Fag.
I. There must be a Change in the Eye, that Objects may appear diftinct at different Diftances,

CONTENTS.

xxix

SECT.

Pay.
2. Déla Hire's Experiment for proving. that the Eye is never changed, 391
3. His reafoning fully anfowered, and Shewn to be inconclufive,
4. Another Argument propofed by De la Hire againft this Change, viz. that there is no Part belonging to the Eye capable of producing it,
5. A third Argument brought by bim is, that there is no need of any foch Change, and that the Eye can fee diftinatly enough at different Diftances without it, and bow,
6. This aldo answered,

404
7. Experiments demonftrating that our Eyes change their Conformation, and adapt thenifelves to the various Diftances of
Objects within certain Limits, and what the fe Limits are to which the Power of, the Eye extends,
8. Some are of Opinion, that this Change
of Conformation conflys in the Eyes becoming oblong and flat,
9. The Eye cannot be lengthened by the joint Contraction of the oblique Mufcles,
10. Nor by the four freight Muscles acting together and comprefing the Sides of the Globe,

II. $\stackrel{426}{N}$

CONTENTS.

Sect.

Pay,
II. Nor can thee fe Muscles render the Eye flat by pulling it inwards, and preffig its Bottom againft the Fat, as others have imagined,
if. Further Reafons against any Change of Figure in the Eye,
13. The Hardness and Inflexibility of the Sclerotic in Birds and Fifes, repugnant to this Change of Figure, 429
14. The Neceflity of using Glafles of different Convexities for facing diftincitly at different Diftances, after having been couched of a Cataract, a demonfrative Proof that the Eye does not change its Figure, and that the Change made in the Eye muff lie in the Crystalline,
15. The Figure of the Crystalline is not changed by the Ligamentum Ciliare, 436
16. Nor is this Change of Figure rendered more probable from the different Subfrances of which the Cryffalline is compofed, aud that because this diverfity of Suliffance answers another Purpose, and rulat,
17. The Cryfalline is not made more or refs convex by the Action of any Fibres that enter its Composition, $44 I$

CONTENTS.

xxxi

SECT.
18. This Shewn to be impofible, because the Crystalline has no Connection with the Parts adjacent from which it can derive Blood and Spirits,

443
19. The Change made in our Eyes confifts in the Motion of the Crystalline,
20. The Ligamentum Ciliare performs this Change, and bow,
21. An Objection answered, 447
22. KEPLER the firft who difcovered the

USe of this Ligament, but errs in explaining it,
44^{8}
23. This Ligament Serin to be muscular, and De la Hire's Objection to its Ufo thence anfwered,

TREATISE

> ONTHE

Eye, the Manner and Phrenomena of Vision.

BOOK I.
Of the Parts fubfervient io the Eye.

C H A P. I.

Of the Supercilia or Eye-brows.
Sect. i.

F all the Parts of the Body, there is none whofe Structure and Mechanifm difcovers more Art and Defign, than this little Organ the Eye; all its Parts are fo excellently well contrived, fo elegantly formed, and nicely adjufted, that none can deny it to be an Organ as magnificent and curious as the Seinfe is ufeful and entertaining.
Vol. I.
A.
By

2 Of the Supercilia or Eye-brows. Book I.
By means of this Organ, we difcover the Magnitude, Figure, Diftance, Situation, Motion, Colour and Beauty of Bodies: Without it, as all the Animal World would be in perpetual Darknefs, fo it would labour under perpetual Inconveniencies, be expofed to perpetual Harms, and fuffer perpetual Wants and Diftreffes: But now, by this admirable Senfe, we are enabled to fee and chufe wholefome, yea delicate Food, provide ourfelves ufeful, yea gaudy Cloathing, and commodious Places for Habitation and Retreat: We can difpatch our Affairs with Alacrity and Pleafure, go here and there as our Occafions call us, and, by looking about us, can difcern and fhun the Precipices and Dangers which would deftroy us; we can now, if need be, ranfack the whole Globe, penetrate into the Bowels of the Earth, defcend into the Bottom of the Deep, travel to the fartheft Regions of the World, to acquire Wealth, to increafe our Knowledge, or even only to pleafe our Fancy, and fatisfy our Curiofity. And thofe glorious Objects which fill the Heavens and the Earth, thofe admirable Works of Nature which every where furround us, and which would be as nothing to us without being feen, do, by means of this noble Organ, prefent their Glories to our View, and fill us with Admiration and Delight. In a word, without the Benefit of Light, the animated Part of this Syftem would be but fo many

Chap. I. Of the Supercilia or Eye-brows. 3
Puppets toft up and down by Chance and Fortune, without Houfe or Habitation, and deprived of all the Pleafures and Conveniencies of Life. What a miferable State would it be, to be confined to perpetual Darknefs, and never to behold the chearful Light? But I need not expatiate on the Ufefulnefs and Praifes of this Senfe, which we receive the Benefit of every moment, and the Want, or any Defect of which we lament among our greateft Misfortunes. I fhall therefore proceed to examine the beautiful Structure of the Eye, from which we receive fo many Advantages.
§ 2. For our clearer Proceeding in this Matter, I fhall divide this Organ, after the common Manner of Anatomifts, into two Parts, viz. the Internal, which is the Globe or Body of the Eye itfelf, formed by the Tunica cornea and Sclerotica, and the Parts contained in them; and the External, which are thofe Parts about the Globe fubfervient to it, fuch as the Supercilia or Eye-brows, the Cilia or Eyelafhes, the Palpebra or Eye-lids, the Glandula Lachrymalis or Imnominata, the Caruncula and Puncta Lacbrymalia, \&cc. All which we fhall defcribe in Order, beginning with the External Parts. And firf of the Supercilia or Eyebrows.
§ 3. The Eye-brows, as every Body knows, are nothing elfe, but fome Hairs placed above the Eye, which ferve to defend it
from Light when too ftrong, and efpecially from Duft, Mots, and fuch other Corpufcles floating in the Air, as, by falling into the Eye, might hurt its tender Subftance, or render it opaque and unfit for tranfmitting the Rays of Light.
\$4. Amongft all Creatures, Man alone is provided with Eye-brows; becaufe his Skin is fmooth, and confequently would eafily allow fuch Particles to flide alongft it as might hurt the Eye, did not Nature provide againt that Misfortune, by placing above it that thick Wood of Hairs.
§5. It is for the fame reafon that the Caflowar, that ftrange Bird, which, next to the Oftrich, is the greateft of all we know, being commonly five foot and a half in length from the End of the Beak to the Extremity of the Talons, and which has not been fpoken of by any of the Antients, nor fo much as known in Europe, till the Year 1597, that the Hollanders brought one from India; I fay, it is for the fame reafon, that this Bird is provided with a Row of black Hairs, like a Demicircle at the Top of the Eye, raifed like an Eye-brow, becaufe the Skin of its Head and Neck is fmooth and without Feathers: But other Animals that have a rough plumaceous or hairy Skin, have no occafion for Eye-brows, becaufe the Roughnefs of their Skin alone is fufficient to anfwer their End.

Chap. 1. Of the Supercilia or Eye-brows. 5
§6. It is to be obferved, that the Eyebrows do always bunch out confiderably more than the Eye, becaufe of fome Fat which is under the Skin in that Place, and becaufe of the Eminence of that Part of the frontal Bone which lies under them.

The frontal Bone has two confiderable Eminencies, one above each Eye, formed by the Separation of the two Tables of the Skull, which leave Cavities betwixt them commonly called the Frontal Sinufes. It is upon thele Eminencies that the Supercilia are placed, and therefore they bunch out confiderably above the Eye, which enable them the better to guard and defend it.
§ 7. There is yet another Mechanifm provided by Nature by which the Eye-brows are excellently well fitted for defending the Eye, and that is, a Mufcle, which, by its Contraction, draws the Eye-brows obliquely downwards, and at the fame time does corrugate them, and make them approach one another.

Volterus Coiter, in his Obfervationes Anatomicr, is the firft I find who has defcribed this Mufcle. It arifes from the great Cantbus of the Orbit, precifely where the $O s N a f i$ is joined to the anterior Apoptoyse of the Os frontis, from which Origin it goes obliquely upward, and terminates by a Tendon in the Skin about the Middle of the Eye-brows.

Some

6 Of the Supercilia or Eye-brows. Book I.
Somè Anatomifts (whofe Opinion Cow PER, in his Myotomia Reformata, feems inclined to favour) reckon thefe Mufcles only two oblique Elongations of the Frontals; but to me it appears of no confequence, whether they be thought diftinct Mufcles, or only fuch Prolongations, provided that their Ufe be underftood.

All Anatomifts agree, that there Mufcles ferve for pulling the Eye-brows obliquely downward, and at the fame time for corrugating them, and making them approach one another: Their Origin and Infertion, and the Direction of their Fibres, fhew plainly that to be their Ufe; and therefore they are named Corrugatores vel Deprefores Superciliorum.
§8. From the Action of thefe Mufcles pulling down and corrugating the Eye-brows, we receive a twofold Advantage: I mo, The Eye is beiter defended againft Duft, Mots, and fuch like external Injuries. Hence it is that every body, when walking abroad, or riding in a dufty Road, (as all of us have often done in Summer, whei the Roads are dry); I fay, every body in that Cafe pulls down his Eyebrows as much as poffible, that he may the better cover his Eyes, and defend them againft the Duft and Mots with which the Air is then filled. $2 d o$, A fecond Advantage we reap from this Depreffion of our Eye-brows, is the breaking and intercepting the Rays of Light, when

Chap. I. Of the Supercilia or Eye-brows.
the vifual Object is too luminous, or when the Eye is placed in too bright a Light. Hence irr fuch Cafes we alfo pull down our Eye-brows, that the Eye may be the better able to bear the Light, a Part of which is now intercepted by the depreffed Eye-brows forming a kind of Shade on the Eye; and when the Eye-brows are not fufficient for this End, as fometimes happens when the Light is very ftrong, we can affift them by applying our Hand to our Forehead, by which our Eyes are more effectually fhaded, fo as to enable us to bear the Light, which otherwife would dazzle and hurt our Eyes. But when there is no Danger to our Eyes, either from Duft or Light, we pull up our Eye-brows, that none of the Light may be ftopt, but that all of it may fall upon our Eyes; by which the Sight or Field of Vifion is enlarged, and all the Objects above the Axis of Vifion are now feen: whereas, when the Eye-brows were depreffed, thofe moft remote from this Axis, being fhaded by the Eye-brows, could not be perceived.
\$9. The Mufcles which pull up our Eyebrows are the Frontales; they arife by a thin broad flefhy Beginning, from the upper Part of the $O s$ frontis, from whence defcending, they are inferted into the Skin of the Eye-brows, which they muft therefore pull upward, that none of the Light may be ftopt by them.

C H A P.

8 Of the Eye-lids and Lafhes. Book I.

C H A P. II.

Of the Palpebre or Eye-lids, and the Cilia or Eye-laf.es.

Sect. I. THE Palpebre or Eye-lids are thofe Parts which in time of Sleep cover our Eyes. They are two in number for each Eye, viz. the fuperior and inferior. They are called Palpebra, a palpitando, quod palpitare et tremere videantur, fropter citifimum et frequentifimum motum.
\& 2. Both fuperior and inferior are compofed of five Membranes and a Cartilage. The furt is the Epidermis or Scarf-fkin, of which I need fay nothing here. The fecond is the Cutis or Skin, which is here very thin; and therefore, by Arifotle of old, it was faid to be Cutis fine carne; and it is upon this account that fo many Authors, following in this the Doctrine of GALEN, have affirmed, that when it is cut, it does not coalefce. It is exceeding foft and laxly extended over the Eye-lids, that it may the better accommodate itfelf to the convex Figure of the Eye, and that it may be moved to and again thereon with the greater Facility. Hence alfo it is, that in Fowls there are never any Feathers to be found upon their Eyc-lids, becaufe their Roots would

Chap. II. Of the Eye-lids and Lahes. 9
have hurt the tender Subftance of the Cornea upon their leaft Motion. At the Extremity of the Eye-lids this Skin does not terminate, but is turned over to their Infide, by lining which it forms the fifth and inner Membrane of the Eye-lids; which inner Membrane, at the Edge of the Orbit, folds back again over the outward Face gf the Eye above the Conjundiva to which it is clofely adherent, and which is of fome Confequence to be remembered in curing fome of the Difeafes of the Eye.
§ 3. This Skin is pierced at the Edge of the Eye-lids, for the Paflage of fome Hairs called Cilia, quia Oculos celent ac tueantur. They ferve as a Palijado to preferve and thade the Eyes as the Eye-brows do, and to hinder any Filth or Flies from getting into them. Hence it is to be oblerved, that when thofe Hairs are loft, a Symptom which frequently follows a malignant Small-pox and Ulcerations of the Edge of the Eye-lids, the Sight is confiderably impaired. GaLEN of old obferved this; but his Philofophy could not account for it. All he fays amounts only to this, that thofe Hairs direct the vifual Spirits or the Rays that fhine forth from our Eyes. But the true Reafon is, that thofe Hairs, by breaking and intercepting the adventitious Rays that come from the Heavens, or other Objects above the Axis of Vifion, render the inward Eye more dark; whence the Picture on the Retina becomes more clear and diftinct: Vor.I.

B
juft

Jut as in a Camera Obfcura, the Picture is always the moft diftinct and lively, when no Rays are allowed to enter it but thole that come from the Object forming the Picture.

From this we may fee, why the Sight is commonly belt when thofe Hairs are black, and worft when they are very fair or white ; for as black Eye-lafhes are the mot proper for fhading the Eyes, fo there is no Light reflected from their inner Side, which by entering the Eye might efface or weaken the Picture on the Retina; whereas white Eye-lafhes reflect Light copioufly into the Eye, from which this Picture becomes faint and imperfect. We have a beautiful Hiftory to this Purpofe recorded by Philippus Monaltus (Optice fug, lib. 4 . cap. 8.) which, becaufe of its fingularity, I fall feet down in his own Words. Ulyflppone (fays he) in domo perilluftris S. Francifci Rolini novi quendam, sui oculi glauciflimi; capitis, fuperciliorum, palpebrarumque pili ab ortu fumme candidi, quales etiam per pubertatem barbi pili prodierunt; per juvenilem vero inclinantemque etatem, omnium albedo magi magifque remiffa: Puer is adolefcenfque per diem calligabat; erat per noctem perfpicacior: 庄tate provectior diurnam bebetudinem, nocturnamque perfpicacian fengit manifefte deficere. Cum idem apus Mauritanos captious detineretur; ex illis quidem ((eu ut illuderent capto, feu experiundi gratiâ) atro colore info palpebrarum pi-

Chap. II. Of the Eye-lids and Lafhes.
los intinxere; quo facto confeftim fe ipfo perfpicacior redditus eft; atramento deterfo, mimus perfpicax.

This is a very curious and uncommon Cafe ; and tho' the Author does not account for it, yet from what has been faid, it admits of an eafy Solution: For as black Eye-lafhes, for the Reafons above noticed, are better qualified for darkening the inward Eye than white ones; it can be no Surprife that this Youth fhould have had his Sight improven by having his white Eye-lafhes dyed black; and it is as little furprifing that, in his younger Years, and when a Boy, his Sight was remarkably more dim and confufed in Day-light than towards Night; for at that Time his Eye-lafhes being extremely white, they behoved to reflect a good deal of the bright Day-light into his Eyes, more perhaps than they could well bear; and befides this, the reflected Light, by mixing with the Light coming from the Object in view, behoved to make its Picture on the Retina more dim and confufed. On both thefe accounts, his Sight behoved to be worfe in bright Day-light than towards Night, when lefs of this adventitious Light was reflected into the Eye; but as he advanced in Years, his Eye-lames becoming lefs white, would reflect lefs Light into his Eyes; whence the Difference in his Sight by day and by night behoved gradually to diminifh, and come nearer to what is common and natural.

There
$\$ 2$ Of the Eye-lids and Lafbes. Book I,
There is a remarkable Story to the fame Purpofe recorded by my ingenious Friend the learned Dr. Russel, in his Natural Hiftory of Aleppo, a Eook much to be valued for the many ufeful Obfervations he has given us on the Plague and other Epedimical Difeafes of that Country. This learned Gentleman there informs us, "That, upon a Principle of ftrength" ning the Sight, as well as an Ornament, it is

* become a general Practice among the Turki/h "Women to black the Infide of their Eye" lids, by applying a Powder called Ifmid; " and that this is fometimes practifed by " the Men, but is then regarded as fop" pifh."

This memorable Story ferves to confirm that juft now mentioned from Monaltus, and at the fame time fhews, that it was not out of Wantomnefs that the Turks dyed that Captive's Eye-lafhes, as Monaltus fuppofes, but from the Experience they had of improving the Sight by it; and however trifling or ufelefs this Practice of blacking the Eye-lids may be looked on by fuch as have not fully confidered the Matter, yet it is obvious that the Sight mult receive fome Benefit from it ; feeing lefs Light will be refiected into the Eye by the Edge of the Eye-lids, from which the Pictures on the Retina, and the Vifion caufed thereby, muft be more perfect and diftinct. Thofe whofe Eyes are extremely good, and whofe

Chap. II. Of the Eye-lids and Lafhes.

Occafions feldom call them to be attentive to minute Objects, as they have no need to black their Eye-lids, fo they may indeed be infenfible of any Benefit arifing from it. But fuch as have a weak Sight, or who are employed in Sewing, or fuch like fubtile Work, cannot but be fenfible of the Improvement made in their Sight by this black Colour. This Method of improving the Sight, I imagine, was at firft difcovered by chance; but after it was difcovered, it needs be no Surprize that it became general amongft thofe Women, on account of the more fubtile Work they might have occafion to be employed in; more efpecially that they found that it was looked on as an Ornament. And it is as little furprifing, that, when the Men, without Neceffity, and contrary to the Cuftom that has obtained among them, imitate the Women in this Practice, fuch are regarded as foppifh, as the Doctor informs us. But to return to the Membranes of the Eye-lids.
§ 4. The third Membrane of the Eye-lids is the Membrania adipofa or cellulofa, which is likewife very thin, becaufe there is fcarce any Fat contained in its Cellule. It is this Membrane which fwells fo exceffively in the Smallpox, from the Depofition of an acrid Serum into its Cellules, which are thereby vaftly extended.

The fourth Membrane of the Eye-lid is carnous, and is nothing but an Extenfion of the orbicular

14 Of the Eye-lids and Laßbes. Book I. orbicular Mufcle. At the Extremity of this Membrane is attached a foft thin broad Cartilage called Tarfus, propter ficcitatem, quod carnis fit expers; for which reafon the Back of the Foot bears the fame Name. Its figure is like the Segment of a Circle; it is convex in its Outidid, but concave on the other next the Eye, by which means it, keeps the Eye-lids, to whofe Extremities they are attached, equally extended over the Eye, and difpofes them to be moved to and again thereon without Wrinkles. Thefe Cartilages are covered with the Skin externally, and with the inner Membrane of the Eye-lids internally. Upon their inner Side, next the Eye, there is a Range of fnall febaceous Glands, called from their firf Difcoverer Glandula Meibomie. They feparate a fort of Balfam from the Blood which they fend to the inner Edge of the Eye-lids by excretory Ducts which open thereon. Thefe Glands, together with their Excretories, are weil defcribed by the famous Morgagni in lis Adverfaria, who therefore deferves to be confiulted thereon. The Ufe of this Balfam is to defend the Edges of the Eye-lids from being excoriated where they ftrike upon one another, and to keep them from Concretion in time of Sleep, as fometimes happens, when, from any Difeafe in thefe Glands, this Ointment is either wanting, or has loft its balfamic Quality;

Chap. II. Of the Eyelids and Laches.

Quality; a Cafe which frequently occurs in Practice.

The $f i f t$ and laft Membrane of the Eye-lids is exceeding thin and delicate. It lines the Infide of the Eyelids. Some will have this Tunicle to be a Production of the Periofferm, which lines the Orbit internally: But to me, as I have hinted before, it appears rather a Production of the Skin which covers the Eye-lids externally, and that for there Reafons:
i mo, Becaufe they are both fo clofely conjoined and confounded together at the Edge of the Eye-lids, that they cannot be Separated without cutting their Subftance; which could fcarcely happen, were they diftinct Membranes only joined together.

2do, A second Reafon may be gathered from what Ruysch observes, in his moth Thesaurus, concerning the Structure of this inner Membraze. He there tells us, that over all its int ternal Surface, next the Eye, it abounds with nervous Papilla, by means of which it is endowed with fuch an exquifite Senfe, that the leaf Particle of Sand getting betwixt it and the Eye, occafions an unfupportable Pain. There neevous Papilla with which this Tunicle abounds, and which render it fo fenfible, especially when inflamed, feem to me a very flong Argument for its being thought a Continuation of the Skin of the Eyelids, rather than of the Periof F_{7} term lining the Orbit, which never has any

16 Of the Eyc-lids and La/hes. Book I.
of thofe tervous Papille with which the Skin and the inner Membrane of the Eye-lids abound.

And, laftly, when any of the Eye-lids happen to be renverfed, fo as to have their inner Surface expofed to the Air, as in the Difeafe called Ectropion, this Membrane at laft becomes dry, and appears altogether like the Skin, as Maitre Jean well obferves (Maladies de l'Oeil, chap. 2.) Nor do I fee how this Tunicle, if it were a Production of the Periofeum, could be conceived to fold back again at the Edge of the Orbit, and to extend itfelf over the outward Face of the Eye above the Conjunctiva, as it moft certainly does, and from which it may eafily be feparated, as has alfo been obferved, by Maitre: Jean (ibid. chap. 6.) and other Authors of Credit.
\$ 5. The Ufe of the Eye-lids is to cover the Eye, to defend it againft ftrong Light and other external Injuries, and, by their quick and frequent Motion, to diffure equally over the whole Cornea the Liquor which comes from the Glandula lacbrymalis, by which means the Eyes are continually moiftened, wafhed, cleaned, polifhed, and made more tranfparent, for the better tranfmitting the Rays of Light.
\$6. That our Eyes may fuffer from frong Light, as well as from groffer Matter, is obvious to every one's Experience, and is further confirmed by that memorable Story
of Xenophon's Troops, many of whom were blinded by the bright Light reflected from the Snow thro' which they were obliged to march. This Story is recorded by Galen de Ufu Partitm, Lib. x. 'where, in Confirmation of the fame Doctrine, he alfo takes Notice of thofe mifetable Captives whom Diornyius the Tyrant of Sicily, ufed to bring forth from the dark Dungeon in which they were confined, into a white well lighted Room; and who, not being able to bear this fudden Tranfition from Darknefs to fo bright a Light, were thereby immediately blinded.

The fame antient Author there alfo obferves, that no body can look ftedfaftly on the Suin for any Time together, without lofing his Sight; which Misfortune, he fays, has happenied to many, who, from a Defire to fee the Progrefs of an Eclipfe, were fo imprudent as to keep their Eyes fixed on this firy Globe for a confiderable Time, by which they were foon blinded; and fuch as were not blinded had their Sight fo much hurt, that they recovered it with Difficulty.
The famous Story of Attilius Regulus is another Proof of what our Eyes may fuffer from ftrong Light. This noble Conful of Rome, fo famous for his Faithfulnefs in keeping his Word to his Enemies, tho' it ivere to the Lofs of his Life, having been taken by the Cartbaginians in the firft Punic War, was fent Voli.
to Rome to advife an Exchange of Prifoners; but he perfuaded the contrary in the Senate, and therefore, upon his Return to Carthage, for a Punifhment, they cut off his Eye-lids, and expofed him to the Sun, whofe Light he could not long bear without being blinded; as Fabricius ab Aquapendente obferves from the Roman Hiftorians.

From thefe Hiftories we may fee of what Ufe our Eye-lids are in defending our Eyes againft ftrong Light, and why, when it is very ftrong, we hut our Eye-lids fo as to leave open only a very fmall Slit, by which Action a Part of the Light is intercepted, which by entring our Eyes might dazzle them, and hurt our Sight.

And it is for the fame Reafon, that thofe who paint on white Leather, efpecially when their Sight is weakened by an Ophtbalmia, or fome fuch Difeafe, find it neceffary to place hard by the luminous Object dark and green Colours, towards which the Eyes being turned from time to time, they are thereby refrefhed and ftrengthened; for being relieved from the Pain and Fatigue they fuffered from the luminous Object, they foon recover Strength again, fo as to be able to bear the Light of the Object for fome Time longer
§ 7. Cruftaceous Animals, fuch as the Locufta, Gammarus, Pagarus, Cancer, doc. want Eye-lids; becaufe in them, in place of being ufeful

Chap. II. Of the Eye-lids and La/hes. 19

uffeful or neceffary, they would have been hurtful, and an Impediment to their Sight; for, had Nature extended their hard cruftaceous Skins over their Eyes in form of Eye-lids, they could not have been moved to and again upon their Eyes ; at the fame time, were it poffible they could be moved, they would neceffarily hurt the tender Eye, in place of defending it: Therefore provident Nature has wifely contrived another Method by which their Eyes might be fecured from external Injuries, and that is the Hardnefs of the Cornea, which in thefe cruftaceous Creatures exactly refembles the Horn of a Lantern, and therefore is not to be hurt by fuch Particles as their Eyes are commonly expofed to.
Fabricius ab Aquiapendente affirms, that this horny Hardnefs obtains not only in cruftaceous Animals, but alfo in all others, without exception, that want Eye-lids for guarding and defending their Eyes. In gammaris pijcibus, (fays he) de Ocul. p. 1. cap. 2. et iis quorum oculus palpebra non tegitur, ita dura eft. cornea, ut exacte cormu laternarum rigiditatem quoque pre fe ferat. Thefe are Fabricius's words. But in this I apprehend he is miftaken; for tho' I do not deny that in Animals that want Eye-lids the Cornea is commonly much firmer and harder than in Man, and other Creatures that are provided with Eye-lids; yet in many fuch Animals

Animals we find that its Hardnefs is far inferior to that of the Horn of a Lantern.

There is yet another Mechanifm by which the Eyes of cruftaceous Animals are fecured, and that is, deep Sirufes into which, as into a fafe Chamber, they can retract their Eyes upon the Approach of any extraordinary Danger, or when they incline to fleep; as has been excellently well obferved by the fame Fabricius in the above quoted Treatife de Oculo:-No Animalcan fleep eafily while the Light is frong, unlefs its Rays be kept from falling upon their Eyes:-This therefore is one Reafon why Animals that are expofed to bright Light are provided, fome with Eye-lids, fome with deep Sinufes, by means of which they can fhade their Eyes, for intercepting the Light which otherwife would foon difturb their Reft.
§ 8. But moft Fifhes are deprived both of Eye-lids and thefe Simufes, becaufe they have no occafion for either of them : For fince they conftantly refide in Water, their Eyes are not expofed to Air, Snoak or Duft, which would dry, hurt, and obfufcate the Eyes of LandAnimals, were they not perpetually moiftened, cleaned and polifhed by the lachrymal Juice and Motion of the Eye-lids; and moreover, the Cornea of Fifhes being commonly more firm and hard than in Land-Animals, can receive no Hurt from fuch Particles as their Eyes
are ufiually expofed to. Neither in Sleep have they occafion, to cover their Eyes; becaufe the Water, in which they are, intercepts a Part of the Light, and renders it lefs fit to difturb the Reft by its Brightnefs : and befides, when they would fleep, they can defcend into the Bottom of the Water, or hide themfelves among Stones, Herbs, or Mud, fo as to anfwer all the Ends of Eye-lids.
§ 9: But tho' Fifhes commonly want Eyelids, yet it has fince been found, that Flounders, Plaife, Soles, and all flat Fifhes, are excepted from this Rule, and have Eye-lids wherewith they can cover their Eyes as need requires. The Reafon of which feems to be, that this Sort of Finh are not fo Nimble as others in fwiming, being only able to move their Tails, their chief Inftrument of Speed, upwards and downwards: Wherefore thefe Fifhes, in a Storm, do not betake themfelves to the deep Sea, at the Bottom of which they would be in Safety; but they dig themfelves Holes in the Sand, as I have been informed; which fecures them from being thrown upon the Beach or Strand. Now, if they had not Eye-lids, the fharp Points of Sand, whilf they are making their Beds, would fcratch and cut the Tunics of their Eyes, whereby the tranfparency thereof would be deftroyed, and confequently thefe Fifhes would become Blind; which
which is an additional Proof how perfect every Creature is, in its own Species.
§ 10. And with regard to Infects, I might here obferve, that altho' the Hardnefs and Firmnefs of the Cornea is in them fo good a Guard to their Eyes, as to render Eye-lids unneceffary; yet thefe Creatures are obferved to have fomething analagous to Eye-lids, wherewith they clean and wipe their Eyes from time to time. The Reafon of which is, that Infeets refide conftantly in Air, which, by means of the Smoak, Duft and Moats with which it abounds, would foon obfufcate and tarnifh the tranfparent Eye, were it not thus wiped and cleaned as need requires.

The Inftruments employed in this Work, are the Fore-legs and the Antenna or Feelers: But whatever the Ufe of the Antennue may be in cleaning the Eyes, they are moreover, in all probability, a good Guard to the Eyes and Head in their Walk and Flight, enabling them, by the Senfe of Feeling, to difcover fuch Annoyances, which, by their Proximity, may perhaps efcape the Reach of their Eyes and Sight; for it is manifeft, that Infects clean their Eyes with their Fore-legs as well as Antenna; and confidering that as they walk along, they are perpetually feeling and fearching before them with their Feelers or Anterne ; I cannot help thinking, that, befides wiping and cleaning the Eyes, the Ufes above named fhould
alfo be admitted; efpecially that it is extremely probable that the Eyes of Infects do not change their Conformation, and adapt themfelves to various Diftances, but, continuing always the fame, are fitted only to fee diftantial Objects, but not fuch as are very nigh; which Inconvenience the Feelers obviate, left it fhould be prejudicial in occafioning the Infect to run its Head againft any thing in its Way.

And that this rather than the wiping of the Eyes is the chief Ufe of the Feelers, is further manifeft from the Antemne of the Fle/h-fy, and many other Infects, which are fhort and ftrait, and incapable of being bent unto, or extended over the Eyes. As alfo, from others enormoufly long, fuch as thofe of the Capricorni or Goatchaffers, Cadew-fly and divers others, both Beetles and Flies. But to return;
§ II. As Animals having firm hard Eyes commonly want Eye-lids, fo, on the contrary, all Animals that have a foft, tender and delicate Cornea, and who conftantly refide in the Air, as Man, Quadrupeds and Fowls, are always provided with Eye-lids, wherewith, in time of Sleep, they cover their Eyes, partly to defend them againft external Injuries, and partly to intercept the Light, which, by falling into their Eyes, would greatly difturb their Reft ; but, at other times, as has been before obferved, thefe Eye-lids are moved to and a-
gain upon the Eyes, for cleaning, wafling and polinhing the Cornea; and which is remarkable, this Motion is fo very quick, that it does not in the leaft hinder our Sight.

Every body knows, that if a burning Coal be nimbly moved round in a Circle with Gyrations continually repeated, the whole Circle will appear like Fire. The Reafon of which is, that the Senfation of the Coal, in the feveral Places of that Circle, remains impreffed on the Senforium, until the Coal return again to the fame Place; for the Motions excited in the Bottom of the Eye by Light, and thence propagated to the Senforium, are of a lafting, and confequently of a vibrating Nature; and therefore, if our Eye-lids take no longer time to pafs and repafs upon our Eyes, than what the Coal of Fire takes to go round, the Impreffion made in the Bottom of our Eye by any Object will always continue, and fuffer no fenfible Interruption from the quick Motion of the Eyelids paffing over our Eyes ; and this is the Reafon why Nature has endowed our Eye-lids with fuch a quick twinkling Motion.
§ 12. The Mufcles wherewith the Eye-lids are moved are,
tmo, The Elevator Palpebre fuporioris, fometimes alfo called rectus. It arifes by a fmall flefhy Beginning from the Bottom of the Orbit, near the Place where the optic Nerves pierce the Cramium, and paffing above the

Chap. II. Of the Eye-lids and La/bes. 25
Attolens oculi, it becomes tendinous, as it marches over the Bulb of the Eye, whence growing ftill broader and thinner, it is inferted into the whole fuperior Part of the Cartilage of the upper Eye-lid. When this Mufcle acts, it lifts up the Eye-lid, and difcovers the Eye.

It is no eafy matter to account for the grofs Miftake into which not only Gal en, but the accurate Vesalius himfelf, has fallen into, concerning this Mufcle, which tho' its Diffection requires but little Art, yet by both thefe Authors, it is afcribed to the Eye; for which Realdus Columbus does juftly reprehend them ; but at the fame time he commits no lefs an Error himfelf, in fuppofing, contrary to what Galen and Vesalius teach, that the Obliquus fuperior belongs to the Eye-lid.

2do, The Eye-lids are brought together to fhut upon the Eye by another Mufcle, which, becaufe of its Figure, is called Orbicularis. This is a thin flehy Murcle, about two Fingers broad, whofe Fibres do circularly environ and cover the Eye-lids, and are not adhering to any Bone from which we may derive their O rigin except the fuperior Part of the great Bone of the Nofe. This Mufcle, like the Sphincters of other Parts, confringes the Eye-lids, and brings them together over the Eyes; and likewife when it contracts with a more than common Force, it preffes the Globe of the

Vol. I.
D
Eye

Eye inwards; by which means the Glandula lychrymalis is comprefed, and the Tears contained therein are fqueazed out in greater Plenty upon the Eye, for moifening and cleaning it, as occafion requires.

Galen, and the antient Anatomifts, together with Vesalius, Riolanus, Spigelius, ©o. do divide this Mufcle into two, viz. the Semicircularis fuperior and inferior, and make the fuperior to arife from the great Camthus and fpread over the fuperior Eye-lid, and terminate at the leffer Canthus; and in like manner to the inferior, which covers the under Eye-lid, they give the fame Origin and Termination. The Reafon of which Divifion, is not fo much that they pretend to have difcovered two Mufcles, as becaufe they receive different Nerves coming from different Places, and becaufe they have fometimes obferved, in the Conoulfio canina, that the inferior Eyelid is rigid and immoveable, while the other is well, and in its natural State: But thefe Reafons do not appear fufficient for thus dividing this Mufcle; for, as Cowper well obferves, there appears no divifion of Fibres at the external Angle; and befides feveral other Mufcles, and particularly fome of thofe belonging to the Nofe, have different Nerves, as well as the Orbiculares palpebrarum, as BarthoIINE and others obferve.

Chap. II. Of the Eye-lids and Laßes.

The under Eye-lid has but a very obfcure Motion, and therefore has no need of a particular Mufcle for opening it. The elaftic mufcular Fibres, which from it are fpread upon the Cheeks, and which have been well defcribed by Eustachius and Cowper, being fufficient for that End.
§ I 3 . It is to be obferved, that tho' all Animals that are provided with Eye-lids have a Power of moving them to and again upon their Eyes for the Purpofes above noticed, yet, in different Animals, they are differently moved; fome moving the fuperior more than the inferior, arid others moving the inferior more than the fuperior. This feems at firf View to be a Matter of no great Confequence, and farce worth inguiring into; yet Nature, which does nothing in vain, has not without very good Reafon made the Eye-lids of different Animals thus differently moveable.

Man, and the greateft Part of Quadrupeds, that is, thofe of the viviparous Kind, move both Eye-lids; but the Motion of the under Eye-lid is very obfcure: Whereas all oviparous Quadrupeds, fuch as the Tortoife, all Birds, and in general, all Animals that look much down, and feek their Aliment from the Ground, have the inferior Eye-lid greatly more moveable than the fuperior. The Reafon of which is fo well exprefied by Fabricius ab Aquapendente, that it may not be difagreeable to read it in his own

28 Of the Eye-lids and Lafies. Book I.

Words. Illa animalia (fays be, de Ocul. p. 3 . cap. I3.) que prona incedunt, queque a terra almoniam capiu:it, ut teffudines, ©oc. palpebram inferiorem mobiliorem fuperiori babent, ut oculus magis tegatur aperiaturque, ea parte qua oculorum uf fus et cuftodia poftulat, boc eft, qua magis fimint offenfionibus expogiti, aut qua magis venire offenfiones periculum eft, aut qua magis oculum offendi ab extrinfecus occurfantibus certifimion eft, ut a Spinis, feftucis, puivere, et aliis id gemus offindiculis, qua magis a terra et ex inferiore parte acsedere poterant. Aves autem, five permata animalia, ita palpebram inferiorem babent mobilem, ut Superior parum omnino moveri videatur; quod hac magis adhuc, five in terra degant five in aere, oculos ad terram inclinatos obtineant, a qua parte offerfiones ad oculum venire periculum eft.
§ 14 . Befides thefe Eye-lids, provident Na ture has contrived another Fence and Security for guarding, defending and cleaning the Eyes of fuch Animals as the Neceflities of Life oblige to frequent Trees and Bufhes, as Birds; or Hedges and long Grafs, as Horfe, Cows, Frogs, and other Quadrupeds. 'This aditional Guard goes commonly under the Name of Membrana nicfitans, or internal Eye-lid, and is nothing but a moveable Membrane placed next to the Comea, over which it paffes to and again under the Eye-lids, the better to defend and preferve the Eyes of thefe Animals that are frequently among Trees, Bufhes or Grafs; which

Chap. II. Of the Eyc-lids and Laßes.
which is the only Ufe that Dr. Willis, and the mof part of our Engli/h Writers, afcribe to this Eye-lid.
§ 15. But the French Academifs, whohave been very diligent in examining this Eye-lid, and to whom we owe the Knowledge we have of its Structure and Mechanifm, finding it not only in Creatures that frequent Trees, Bufhes, and Grafs, but alfo in all Animals expofed to Air that want Hands for rubbing their Eyes, are of Opinion, that its principal Ufe is, not fo much to defend the Eye from being hurt by Grafs, or the Leaves of Trees and Bufhes, as, in conjunction with the other Eyelids, to clean and wipe the Cornea, and keep it from drying and becoming lefs tranfparent; for which End it indeed appears excellently well difpofed; for it moves tranfverlly from right to left, and from left to right, over the Cornea, while the other Eye-lids fhut and open for the better wiping and cleaning the Eye, every way; and which is remarkable, to this Eyelid, as may be feen in all large Birds, is attached the laclirymal Gland, whofe Excretory (for in Birds there is but one) penetrating above half way thereupon, upens opon the Eye about the Middle of this Eye-lid; which is evidently done, to fpread a Liquor over the whole Cormen, for the better wafhing and cleaning it, when this Eye-lid paffes and repaffes, as it is obferved to do every moment.

30 Of the Eye-lids and Lafkes. Book I.
In Calfs, this lachrymal Gland has two excretory Ducts, which open upon the Eye, one on each Side of that Cartilage, which is peculiar to this Animal, as has been obferved by Steno, Varheyen, and others. This Cartilage, according to fome Anatomifts; ferves to facilitate the Motion of that Membrane wherewith they nictitate. In oculo autem bubulo (fays the learned Diemerbroeck, Anatom. lib. 3 . cap. I3..) preter iftam carunculam, particula quedam callofa et duriufcula, verfus oculum plane levis, exteriore parte aliquartulum afpera, in interno angulo reperitur, membrance qua nictitant motum faciliorem probens. Thefe are DIEMERbroeck's Words, which I thought proper to mention here, becaufe theUfe of this Cartilage is feldom touched on by Anatomifts. But befides this, it feems ftill to have a further Ufe, to wit, by ftrengthening this Eye-lid, it enables it the better to guard and defend the Eyes of this Animal, who being formed to gather its Food from among Thorns and Bufhes, has occafion for a ftronger Fence and Security for guarding and preferving its Eyes, than moft other Creatures.
§ I6. Animals that have Hands with which they can defend their Eyes, and by rubbing them can exprefs the Liquor contained in the lachrymal Gland for wafhing and cleaning them, which is known by Experience they do with good Succels when the Sight is any way darkened,

Chap. II. . Of the Eye-lids and Lafhes.

darkened, or when the Eyes fuffer any Pain or Itching; I fay, Animals that have Hands for guarding and rubbing their Eyes, have no need' of this internal Eye-lid. Hence it is that Man, and the Ape, are the only.Animals expofed to Air and Duft, in whom this Eye-lid is found wanting.
§17. Fifhes alfo commonly want this Eyelid, becaufe their Eyes are in no Danger of being dried by the Air, nor have they occafion either to defend or clean their Eyes from Filth, Duft or Smoak, to which they are never expofed ; and befides, as we have faid before, their Cornea is firm and hard, and fometimes almoft cartilaginous, and therefore is not to be hurt by fuch Particles as their Eyes are expofed to. But all aquatic Animals, that come out of the Water and ftay fome time upon Land, as the Sea Calf is obferved to do, are provided with this Eye-lid, for the fame Reafon that Land-animals are, viz. becaufe they want Hands to rub their Eyes, and exprefs the Humidity contained in the Glands, for wafhing and cleaning them as occafion requires.
§ I8. The Structure of this Eye-lid, and the Mechanifm by which it is moved, tho' exceeding beautiful and induftrious, has not been noticed by any I know of, except fome few of the Gentlemen of the Royal Academy of Sciences. From them therefore, for your Entertainment,

32 Of the Eye 㾞ds and Lafbes. Book I. tainment, I fhall, in as few Words as poffible, defcribe both.

This Eye-lid is nothing elfe but a moveable membranous Part, which, when extended over the Cornea, is of a triangular Figure; but has the Figure of a Crefcent when drawn back again into the great Corner of the Eye for uncovering the Correa. One of its Sides, which may be called its Bafe, is in its whole Length attached towards the inward Angle of the Eye to the Tunica Sclerotica, and takes up about a third, or a little more of its Circumference; the other two Sides are not at all attached to any Part, but leave this Membrane at liberty to be extended over the Eye, or to be retracted from off the Eye into its great Angle, as need requires. That Side which is towards the little Corner of the Eye, and which is moveable, is commonly reinforced with a Border, which fupplies the Place of the Tarfus, and is black in moft Quadrupeds. In Cows, a Part of this Membrane is cartilaginous, as Steno obferves, which may ferve not only for facilitating its Motion, as has been noticed before from Diemerbroeck, but alfo for ftrengthning it, that it may the better guard and defend the Eyes of this Animal, who, when it gathers its Food from amongft Thorns and Bufhes, has occafion for a ftronger Fence and Security for its Eyes than moft other Creatures.

There is no other Mechanifm for retracting this Eye-lid from before the Eye, but the Elafticity of the Fibres of which it is compofed. They arife from its Bajis, where it is attached to the great Angle of the Eye, and are inferted into its Tarfus, or that Side next the fmall Angle; which they muft therefore retract towards the great Angle, whenever the extending Force ceafes to act.

This Eye-lid is extended over the Eye by the joint Contraction of two Mufcles, whofe Contrivance and Difpofition is truly furprifingly curious and beautiful.

The firft arifes, by a broad flefhy Beginning, from the Sclerotica towards the great Comer of the Eye, behind the Attachment of this Eyelid; and contracting itfelf gradually as it goes towards the optic Nerve, near that Nerve it forms a fmall cord-like Tendon; which Tendon paffing under the optic Nerve, upon which it makes an acute Angle, pierces the Tendon of the other Mufcle, which ferves it for a Pully, on which it is bent; and, after it has pierced this Tendon, it goes obliquely upward and inward upon the Backfide of the Eye, to infert itfelf to the moveable Corner of this triangular Membrane, at the upper and inward Part of the Eye, near the Edge of the Orbit.

The fecond Mufcle rifes from the Globe of the Eye towards the little Angle, and ends by a Tendon near the optic Nerve, having its ten-

Vol. I.
E
dinous
dinous End pierced with a Hole, thro' which as a Pully the Tendon of the other Mufcle palfes, and there forms an Angle, in which the optic Nerve is contained, tho' not compreffed or touched, becaufe of this Pully, which keeps the Tendon back.

From this curious Difpofition of the Mufles, it is eafy to conceive, how this internal Eyelid is extended over the Cornea far enough to cover all the Pupil, tho' the Mufcles themfelves are contained in a fmall Space. Every Body knows, that the Contraction of all Mufcles is only in a certain given Proportion to their Length; and therefore that this Eye-lid might be drawn far enough over the Cornea, Nature was obliged to make ufe of a long Mufcle, which could not be contained in fo fmall a Place as the Orbit, without being bended or inflected; and therefore the firf Mufcle is bent tupwards near the optic Nerve, making an acute Angle, where it paffes thro' the perforated End of the other Mufcle, by which means its Action is greatly increafed.

But its Action is yet more increafed, by the Contraction of the fecond Mufcle itfelf, which muft draw the Cord or Tendon of the other Mufcle which paffes thro' it, thro' a Space donble of what it moves itfelf; and thus the Membrana nictitans is extended far enough to cover the whole Cornea, tho' its Mufcles are contained in a fmall Space.

But,

Chap. II. Of the Eye-lids and Lafies. 35
But, that the Difpofition of this Eye-lid, and the Mechanifn by which it is moved, may be the better undertood, fee Plate I. Fig. Io and 2. which I have caufed to be copied from Monf. Perrault.

Fig. i. reprefents four Globes of the Eyes of Birds, of which the two firft are feen from before, and the other two are feen from behind.

ABD the Membrane forming this Eyelid drawn back towards the great Canithus. A D its immoveable Bafe; B the Extremity of the Tendon which draws this Membrane over the Eye; EF G this fame Membrane extended over the Eye by the Motion which the Tendon B makes in going to C in the firft Eye, which is G in the fecond.

HFKL the Eye feen from behind, in which the Membrane is drawn from over the Cornea, and brought into the great Canthus of the Eye. H the End of the Tendon marked B and G; L the Origin of the Mufcle whofe Tendon paffes thro' K to go towards H; IK the other Mufcie whofe Tendon is pierced at K , to ferve as a Pully to the firt Mufcle.
NOP, the fame Eye feen from behind, for underfanding how the Mufcle O N, by contracting, while the Mufcle Q contracts at the fame time, makes the Tendon H move to M , that is, from P to N , or, which is the fame thing, from B to C, or from R to G, by which means

36 Of the Eye-lids autd La/bes. Book I.
this Membrane is extended over the Cornea. And it muft be fuppofed, that, by its elaftic Contraction, it is drawn back into the great Cantbus, when thefe Mufcles ceafe to act.

Fig. 2. Reprefents this fame internal Eyelid feparated from the Eye. A B the lachrymal Gland, C the DưTus lacbrymalis opening upon the Eye.
§ 19. This Eye-lid is of different Colours in different Animals. The Frencls Academifs lave obierved, that, in the Chamois, or Gemp, which is a Quadruped of the Goat kind, it was red; and it is perhaps upon this Account that Albertus affirms that the Chamois has red Eyes.

In the Lion, they tell us, it is black; and it is probable, that the Reafon of faying that Lions do fleep with their Eyes open, is, that without fhutting the Eye-lids, they can cover them with this thick black Membrane, which, as in Birds, can extend itfelf over all the Cornea, as has been obferved by the fame Academifts. Some Creatures have this Membrane tranfparent, fo that it may pafs for a kind of moveable Cornea thro' which Objects are feen. This is particularly obfervable in Frogs, in whom alfo this Membrane is very ftrong, and fomewhat cartilaginous, for the better defending their Eyes: For they being amphibious Creatures, defigned to pafs their Lives in watry Places, which for the moft part abound with

Plants endowed with fharp Edges or Points; and the progreffive Motion of this Animal being not by walking, but by leaping, if his Eyes were not provided with fuch a tranfparent Cafe, he muit either fhut them, and fo leap blind-folded, or, by leaving them open, muft run the Rifk of having the Cornea cut, pricked, or otherwife hurt; whereas, by extending this Membrane over the Eyes, they are fecured from Danger, while at the fame time the Sight is not hindered. This Membrane may be eafily feen, by applying the Point of a Pin to the Eye of a Frog, whilf his Head is held fteady ; for, to fkreen his Eye, he will prefently cover it therewith, and afterwards withdraw it upon a Removal of the fufpected Danger.

In Cows, Part of this Membrane is cartilaginous, as Steno obferves, which in that Creature ferves for facilitating its Motion, and for enabling it the better to guard and defend the Eyes from being hurt by Thorns and Bufhes, from amongft which they have fometimes occafion to gather their Food, as has been before obferved.

The learned Perrault, in his Mechanique des Animeaux, takes Notice, that, in the Fifh he calls the Morgaft, which is a kind of Galeus, this Eye-lid is fituated in the under Part of the Eye, from which it is raifed by one fingle Mufcle, and is again retracted by its own proper

38 Of the Eye-lids and Lafbes. Book I.
Fibres. And I am greatly miftaken, if the Cat has not two of thefe nictitating Niembranes, one in each Angle of the Eye, which they can extend over their Eyes, fo as to meet in the Middle of the Cornea. I had occafion to obferve this lately in a familiar Cat, which jumping upon my Knee, I took occafion to look at its Pupil, and was furprized to fee a Membrane of a dirty white Colour extend itfelf from each of the Cantbi in the manner above noticed. This Cat being uncommonly tame, allowed me to keep its Eye-lids open with my Fingers, and, when it endeavoured to fhut its Eye-lids, I faw thofe Membranes extend themfelves over the Cornea, fometimes more, fometimes lefs, fometimes not at all, and fometimes fo as to cover the whole Cornea, and meet in its Middle. This unexpected Appearance made me at firf fufpect that I had miftaken the Motion of the Uvea, by which the Pupil, which in Cats is an erect Figure, is fhut and opened, for thefe Membranes; and therefore I examined it again, by which I was the more confirmed in what I had before obferved; nor do I fee how I could be deceived, tho' my Sight is not fo good now as it has been; efpecially that the Uvea of Cats is of a bright yellow Colour; whereas thefe Membranes were of a dirty white, like the Skin of labouring Country-people. But leaving this to be further inquired into by Anatomifts, I fhall proceed.

CHAP。

C H A P. III.

Of the Glandula lachrymalis.

Sect. I. PY the lacbrymal Gland, I do not here mean that Caruncle or Carnous Tubercle, fituate in the great Angle of the Eye, at the Entry into the lachrymal Sac, which by the Antients was called the Glandula lachrymalis, and whofe Ufe in Man is not fo much to furnifh the lachrymal Juice for moiftening and cleaning the Eye, as to keep the Puncta lachrymalia, betwixt which it is placed, open, when the Eyes are fhut, and to hinder the Tears from running down upon the Cheeks at the great Angle of the Eye: But, by the Glandula lacbrymalis, I underftand that Gland commonly called the Glandula innominata, which is fituate behind the Conjunctive, upon the upper Part of the Globe, in a hollow Sinus formed in the Orbit itfelf, for the more convenient lodging of this Gland.
§ 2. This Gland is very large, and extends from the external Angle of the Eye to near its Middle; but it is not always exactly of the fame Figure.

It is of the conglobate Sort, being made up of many fimple Glands, which are fo united together,
together, as to form as it were feveral Lobes, fometimes more, fometimes fewer: From each Lobe there arifes a fmall Excretory, which opens upon the interrial Side of the upper Eyelid. Thefe Excretories were firtt difcovered in Sheep and Calves, by that accurate Anatomift Nicolaus Steno, who alfo points out the Manner how they are to be found. (Obfervat. de Gland. Oculor.) In the Eye of an Ox, I have frequently feen eight or nine fuch Excretories, each of which was large enough to admit of a Hog's Brifte: But in Man thefe Excretories are fo fmall, that their Cavity can fcarce be obferved, and are like fo many fmall Lines going from the Gland to the internal Side of the Eye-lid where they terminate.
§3. Some Anatomifts, Morgagn i himfelf not excepted, have been fo fcrupulous, as to doubt whether thefe Lines are the Excretories of the Glandula lachrymalis, becaufe of their fmallnefs, and the invifibility of their Cavities. But with how little Reafon, appears from the Analogy betwixt thefe Lines, and the Excretories of this Gland in Brutes; more efpecially, that there is no other vifible Way how the Liquor fecerned in this Gland can be conveyed from it: We therefore conclude, that the Ufe of this Gland is to feparate from the Blood that thin, tranfparent, falifin Liguor called Tears, and to fend it by thefe line-like Excretories, which open upon the Infide of the fuperior Eye-lid,

Chap. III. Of the Lacbrymal Gland. 4 I

to the anterior Part of the Eye, for moiftening, wafhing and cleaning it, which otherwife would foon dry, wrinkle and lofe its Tranfparency, by the conftant Action of the Air, and the Duft, Smoke and Moats contained in it.
§4. This Liquor is continually, tho' but in fmall Quantity, poured out upon the Eye, and, by the twinkling Motion of the Eye-lids, is equaly diffufed over the whole Cornea, for keeping it moit, clean and tranfparent; but, upon particular Occafions, when our Eyes are any way darkened, or fuffer any Pain or Itching, by being long expofed to drying Winds, Smoak or Duft, this Liquor is poured out upon the Eyyes in greater Plenty; becaufe thien, as has been before obferved, the orbicular Mufcle contracts with a more than ordinary Force, and, by preffing the Globe of the Eye inward, compreffes the lacbrymal Gland, and expreffes the Liquor therein contained; and, when the Action of this Mufcle is not fufficient for expreffing a fufficient Quantity of this Liquor, then we rub our Eyes with our Hands, which prefles the Eye yet more inwards upon this Gland, and caufes it yield its Liquor in greater Plenty. Whence we may fee, why all Animals, whofe Eyes are expofed to the Inguries of the Air, and who want Hands for rubbing their Eyes, are provi5ded with an interior Eye-lid, to which at thie great Cantbus is attached a certain Gland of

Vol. I.
the

42 Of the Lachrymal Caruncle, Points, Book I. the lachrymal Kind, which is peculiar to fuch Creatures, and which opens by one or more Excretories upon the Eye, about the Middle of this Eye-lid; for this Eye-lid, by moving tranfverly to and again upon the Eye, while the other Eye-lids fhut and open, ftretches and agitates this Gland, and expreffes the lachrymal Juice contained in it, for wafhing and cleaning the Cornea as Occafion requires, and is a fufficient Provifion for the Want of Hands, wherewith Man and the Ape rub there Eyes upon the like Occafion, as has been before obferved.

C H A P. IV.

Of the Puncta lachrymalia, Saccus lachrymalis, Ductus nafalis and Caruncula lachrynalis.

Sect. I. N the grat Canthus of the Eye there are two fmall Holes, large enough to receive a Hog's Brifte, called Functa lachrymalia, which, and the Paffage from them to the Nofe, however late the Difcovery may be thought, Galen was not ignorant of; as appears from the I ith Chapter of his Ioth Book, de UJu Partium, where the following Words, as they ftand in the Tranflation, are remarkable: 2ua in palpebris funt tenuia admodum foramina,

Chap. IV. and Sac ; and of the Nafal Duct. 43 que paulo funt extra majorem arigulum, ad nafum enim ufque pertinent, ©े.
§2. Thefe Holes are in the inner Side of the Eye-lids near their Edge, one in each Eye-lid: They lead to a fmall membranous Bag called the Saccus lachrymalis. This Bag is likewife fituated in the great Canthus behind the Caruncula lachrymalis, and lies upon the Os Unguis.

From the Bottom of this Sac there goes a fimall Pipeor Canal, commonly called the Ducius nafalis, which is nothing but a Continuation of the lachrymal Sac. It pierces the Os lachrymale, and opens into the Nofe under the upper Lamina of the Os fpongigfim. The lachrymal Sac, together with this Canal, reaching betwixt it and the Nofe, are nothing but an Extenfion of the inner Membrane of the Nofe, and therefore are glandulous as well as it; from which fome of the Phonomena happening in the Difeafes of thefe Parts might eafily be accounted for, were this a proper Place for fuch Digreffions.

The Caruncula lachrymalis is likewife fituated in the great Angle of the Eye, in the Middle betwist the Puncta lacbrymalia, but a little nearer the Nofe. It was commonly called the Glandula lachrymalis, becaufe it was fuppofed, tho' without Reafon, to filtrate the Succus laclrymalis.
§ 3. In Brutes that have the Membrana nictitams, or internal Eye-lid, it is much larger than in Man, and is truly glandulous, ferving

44 Of the Lachrymal Caruncle, Points, Book I.
to feparate a Liquor from the Blood, which is fent by two or three Excretories to the inner Side of that Eye-lid, for moiftening and cleaning the Cornea. In the Calf, thefe Excretories are large enough to admit a Hog's Brifle, as Vaxheyen well obferves, who therefore fufpects the fame Structure in Men. But in Man no fuch Excretories are to be found; neither is their Texture glandulous, but of a denfe, compact, carnous Subftance, formed by the Conjunction and Duplicature of the Membrane lining the Eye-lids internally, as Morgagni and others have obferved.

Thefe Parts being commonly well enough known, I fhall not wafte Time in explaining: them further; but fhall, in as few Words as poffible, inquire into their Ufe:
§4. The lachrymal Fuice which continually flows from the Glandula imnominata, and which is poured out upon the Eye under the fuperior Eye-lid, for wafhing and cleaning the Cornea, is, by the Motion of the Eye-lids, determined to flow along the Edge of the under Eye-lid to the great Cantbus. The Mechanifm by which this is affected, tho' commonly overlooked, is neverthelefs excceding beautiful and induftrious, and confifts in the two following Particulars: imo, The Poftion of the Eye-lids is fuch, that the Angle which they make, by their Conjunction at the external Canthus, is much more acute than that made at
their internal Canthus; and therefore, when we fhut our Eye-lids, the whole of their Edges do not touch one another at once, but begin firft to touch at the extennal Cantbus, where the Angle is fmaileft, and from thence they proceed fuccefively to touch one another thro their whole Length, till, laft of all, that they touch at the internal Canthus where the Angle is greateft. That the Eye-lids do not fhut all at the fame Time, but fuccellively, in the Manner juit now mentioned, is not only obvious from the above explained Difpofition of the Eye-lids, but may, without much Difficulty, be noticed, by obferving their Motion in a Looking-glais. Whence every body muft fee how this fucceffive fhutting of the Eye-lids muft neceflarily determine the Tears, which flow down the Eye, till they are fopt by the Edge of the under Eye-lid, to run along this Edge towards the great Cantlus; more efpecially that this Canthus is fomewhat lower than the external one.

2do, A fecond Thing that contributes to this End, is the Difpofition of the Edges of the Eye-lids themfelves, which, when fout by the Contraction of the orbicular Mufcles, do touch one another very clofely externally: But internally, at their inner Edge, they at firft do not at all touch, but leave a fort of Furrow on the inner Edge of the under Eyelid, along which the Tears are proffed by the

46 Of the Lachrymal Caruncle, Points, Book I.

further Contraction of the orbicular Mufcle, which, by preffing the Eye-lids togethe: with more Force, obliterates this Furrow, firf towards the external Angle, and thence fucceffively to the internal Angle, which, laft of ail, is effaced. Thefe are the Reafons why the Tears are determined to run along the Edge of the Eye-lids to the great Cantbus; and why any Particle of Sand, falling into the Eye, is thereby foon carried to that Place, as all of us have often obferved. Hence it is, that, if any of thefe two Caufes are wanting, the Tears are not properly direfted to the great Cantbus, but run down the Cheeks; as is frequently to be obferved, when the under Eye-lid has loft its Figure, or when its Edge is in any Part cut or corroded, fo as to allow the Tears to efcape.

From what has been faid, we hope all may underitand by what Mechanifm the lachrymal Juice, together with the Duft and Filth wafhed off the Cornea, is tranfmitted to the great. Canthus, where there is a fmall Cavity formed for their Reception; for in this Angle is placed that carnous Tubercle called the Carmincula lachrymalis, which, by its Protuberancy, hinders the inner Surfaces of the Eye-lids from applying themfelves clofely to the fubjacent Parts; and therefore there is a finall void Space preferved at the Bafis of this Caruncle, into which the Tears are collected.

Chap. IV. and Sac; and of the Nafal Duct. 47
$\oint 5$. The Ufe therefore of this Caruncle, is, imo, To form and preferve a fmall Cavity in the great Canthus for the Reception of the lachrymal Juice.
$2 d 0$, To hinder this Juice from running out upon the Face at the great Canthus, which it would certainly do, were it not ftopt by this Caruncle: For the Eye-lids, when fhut, do but flightly touch one another at their Conjunction in this Angle; and therefore would eafly allow the Tears to efcape at the angular Point where they prefs leaft upon one another, did not this Caruncle intercept their Motion, as Gal en of old well obferves, in thefe Words: Ne igie tur per angulos excrementum effuat, neve aflidue laclorymemus, predictis maatibus col pora bac carnofa fuerunt appofita, qua probiberent quidem, ne oculorum excrementa per angulos vacuarentur, ad proprios autem meatus impellerent. Hence it is, that when this Caruncle is confumed, either by Suppuration, or by the Corrofion of acrid Humours, or Medicines imprudently applied, the Tears run out filthily upon the Cheeks all the Lifetime.

3tio, A third Ufe of this Caruncle, is to keep the Puncta lachrymalia open, which otherwife would be ftopt, by having their Orifices applied to the fubjacent Parts; for this $\mathrm{Ca}-$ runcle, as we faid before, by its Protuberancy, forms a fmall, empty Space at its Bafis, into
4^{8} Of the Lachrymal Caruncle, Points, Book I. which the Tears are collected. It is into this Cavity or Space the Mouths of the Puncta lacbrymalia gape, which muft therefore receive the Tears contained therein, and tranfmit them to the Saccus lachrymalis, from which they are carried by the Ductus nafalis into the Cavity of the Nofe.
§ 6. There are fome who, in examining the Pofition and Courfe of this Paffage from the Eyes to the Nofe, have thought it fomewhat unfavourable for the Motion of the Tears that way; and therefore, to forward their Paffage, they have fuppofed, that the Puncta lachrymalia, by Attraction, abforb the Teats into themfelves, in the fame maniner as Water is attracted in capillary Tubes; and as this Apparatus, according to them, is analagous to a capillary Syphon with unequal Legs, the Tears attracted by the Points flow in the fame manner out of the longer Leg which inheres in the Noftrils. But whatever be in this, the Motion of the Tears muft alfo be promoted by the Contraction of the orbicirlar Mufcle, which, by leffening the Cavity at the great Cantbuts, into which the Tears are collected, muft prefs them forward thro' this Paffage towards the Nofe.

Thus the Succus lachrymalis, together with the Filth wafhed off the Cornea, is conveyed to the Nofe, when in a natural Quantity; but when its Quantity is fo great, as that all

Chap. IV. and Sax ; and of the Nafat Dutc. 49
of it caninot pals by thefe Puncta, as frequently happens upon any violent Paffion of Mind, fuch as Grief, Anger, Joy, \&oc. or wher the lachrymal Gland, or its Excretories, fuffer any Relaxation or Irritation; or, laftly, when this Gland is ftrongly compreffed by the Contraction of the orbicular Mufcle of the Eye-lids prefling in the Globe of the Eye, when it is fretted by Smoke, Sand, or fuch like injurious Particles; I fay, when from any of thefe Caufes the lachrymal Juice is in fuch a Quantity, as that all of it cannot enter the Punita lachrymalin, then it flows down the Cheeks in form of Tears.
§7. From all which it is eafy to underfand why the Acrimony of this Humour fometimes caufeth Sneezing; which we can hinder, by preffing the Angle of the Eye, fo as to ftop its running. We may alfo fee, why, upon weeping, the Nofe drops a thin clear Liquor : for in this laft Cafe, the lachrymal Juice flows into the Nofe, in as full'a Stream as the fmallnefs of the Puncta lacbrymalia can allow of; which therefore muit fall down from the Nofe in thofe thin clear Drops, which have efcaped no body's Obfervation. From this alfo we may fee how Applications made to the Eyes get into the Nofe and Mouth, as Galen has obferved; and how fome can make Smoke pafs from their Mouth to their Eyes. We may from this alfo fee, how that famous Empyric,

50 Of the Lachrymal Caruncle, Points, doc. Book I. taken notice of by Spigelius, could purge his Patients by dropping into their Eyes a few Drops of a certain Eye-water, which never failed giving them two or three Stools, as Plempius informs us. And, lefty, from what has been faid, it is eafy to underftand, why, in Difeafes of the Eyes, accompanied with hot harp Tears, not only the Cheeks, but alfo the Nofe and Upper-lip are fo often galled and fretted by the fharpnefs of this Humour, which fometimes at taft excoriates them, and brings on a Scabbiness in thee Parts.

$$
\begin{gathered}
{\left[\begin{array}{c}
51 \\
\text { A }
\end{array}\right]} \\
\text { ONTHE }
\end{gathered}
$$

Ey.e, the Manner and Phrenomena of VISION.

B O O K II.

Of the Globe or Borly of the Eye.

C H A P. I.

 Of the Situation of the Eye.Sect. I.T TAVING, in as little Compals as the Subject would allow, difpatched what I thought neceffary to be faid on the external Parts of the Eye, the Order propofed now leads me to confider the Globe or Body of the Eye itfelf; after which, I fhall, from the known Properties of Light, deduce the Ufe of its feve-

52 Of the Situation of the Eye. Book II,
ral Parts, and explain the Manner and various Phenomena of Vifion.

The Globe or Body of the Eye, is that Inftrument or Organ of the Body, compofed of Membranes, Humours and Veffels, by which the vifual Species or Iniages of external Obje?ts, are formed on the Bottom of the Eye, from whence they are conveyed, and reprefented to the Mind, for caufing Vifion.

For our clearer proceeding in the Confideration of this noble Part, and for underfanding its beautiful Oeconomy, I fhall confider thefe fix Things : $1 f$ t, Its Situation in the Body; 2dly, Its Connection with the Orbits in which it is placed; 3 dly , Its Form; 4 thly, Its Number; 5 thly, Its Motions; 6thly, and lafly, Its Fabric and Compofition.
§ 2. As to the Firft; The Situation of the Eye. In Man, as well as in all other Creatures I know, the Eyes are fituate in the Head, Pliny indeed, in his Natural Hifory, makes mention of the Blemmyans, a People in FItbiopia, having no Head, but having their Eyes and Mouths in their Breafts ; he alfo makes mention of the Tragloditians, a People beyond (Agypt, on the Weft-fide of the Gulf of $A-$ rabia, who dwelt in Holes and Caves, and who having no Nèck, had their Eyes in their Shoulders: Which Fables I take notice of, more
for the Reader's Diverfion, than for any Truth that is in them.

The Reafons why the Eyes are placed in the Head, are: $\mathrm{i} f$, That they may be nearer the Brain, and confequently may, with greater facility, convey the Images of external Objects to the common Senforium. Had they been placed at any confiderable Diftance from the Brain, the fmall Agitation excited in the optic Nerves, by the Action of fuch fubtile Particles as thofe of the Rays of Light, might have been ftiffled, or in a great meafure diminifhed, before it could reach the common Senfory. This therefore may be one Reafon why the Organs of all our Senfes, except that of Feeling, are placed in the Head, as near the Brain as poffible.

There was indeed an abfolute Neceffity that the Senfe of Feeling fhould have been diffufed thro' all our Body, that every Part might be apprized of Things fafe or prejudicial to it, from the Pleafure or Pain they afford; for had Nature confined this Senfe to any one particular Part of the Body, then all the reft would have been expofed to the Danger of being burnt, bruifed, torn, or otherwife hurt, without our Knowledge, upon a thoufand Occafions; which Inconveniencies we are now warned to avoid by this Senfe of Feeling; which is therefore wifely difperfed throughout every part of our Bodies : But, becaufe
becaufe of its Diftance from the Brain, as well as for other Reafons not neeuful to be taken notice of at prefent, this Senfe dues not affect our Senforium, or imprefs our Mind with any Ideas, but when the Nerve are more violently agitated by the Action of Bodies, than what happens in the other Organs of S tile.

By our Senfe of Feeling, we cally perceive a Table, a Book, a Pen, or fuch like grofs inaterial Objects, becaufe they act upon our Nerves with Force and Vigour: But we do not thereby at all perceive the Rays of Light, the Particles of odoriferous Bodies, or the Motion of the Air in Mufic or other Sounds; becaufe, amongft other Reafons, the Impreffion they make upon the Nerves of that Senfe and the Agitation thereby excited, is fo weak, that it is altogether ftiffled and loft before it can reach the Senforium. But all thefe Impreffions, received by the proper Organs of Sight, Smelling, and Hearing, are eafily conveyed to the Brain, becaufe of their Proximity to it ; which therefore may be one Reafon why the Eyes, as well as the other Organs of Senfe that are affected by the Impreffions of a fubtile Medium, are placed in the Head near the Brain.
© 3. Secondly, Another Reafon why the Eyes are placed in the Head, is, becaufe it is the moft crect and eminent Part of the Body. Had they been in the Eoot, or any Part below

Chap. I. Of the Situation of the Eye. 55
the Head, our Sight would have been very much limited and confined: But by this Situation we can caft our Eyes upwards, downwards, and round about us at pleafure, and entertain ourfelves with a glorious Hemifphere of the Heavens, and an ample Horizon on Earth, at the fame time. In the Hands, they might indeed (in Man) be rendered more eminent than in the Head, and be turned about here and there at pleafure; but then they would be expofed to many Injuries in thofe active Parts, and the Hands themfelves would have been rendered lefs active and ueful.

If any fhould be fo curious as to defire to know how far a Man's Profpect reacheth by means of the Height of his Eye, fuppofing the Earth was an uninterrupted Globe ; the Method is a common Cafe of Right-angled plain Triangles, where the Hypothenufe and one of the Sides are given, and the other is fought.

Thus fuppofe (Plate I. Fig. 3.) AHB the Surface of a great Circle of the terraqueous Globe, C the Centre, E the Height of the Eye. Draw the Line CE, and from the Point E draw the Tangent E H, and join C and H . It is plain, that when the Eye is placed at E, its Profpect will extend to H , whofe Diftance from E is eafily found from the 47 th Prop. of the firft liook of Euclid; which demonftrates, that in Rigit-angled Triangles, the Square of the Hypothentife

Hypothenufe is equal to the Sum of the Squares of the other two Sides. And therefore, in the Right-angled Triangle CHE, the Side EH, or Extent of a Man's Sight, is found, by fubtracting the Square of CH from the Square of the Hypothenufe C E; the Remainder gives the Square of EH , whofe Square-root being extracted, gives the Line E H, or Extent of a Man's Profpect.

The Line C H, being the Semidiameter of the Earth, is known from thofe accurate Ob fervations of a Degree made by Mr Normand in England, and Meff. Picart and Cässini in France, to be nearly 3983,86 Englifh Miles, or 7011594 Yards: The Line CE is the fame with the Addition of two Yards for the Height of the Eye above the Surface of the Earth, or 7011596 Yards, and therefore is alfo known: from which, according to the above Method, the Line EH is found to be equal to three Miles, which is the Diftance the Eye can reach at the Height of fix Feet.
§ 4. This would be the Diftance on a perfect Globe, did the vifual Rays come to the Eye in a ftreight Line ; but by Means of the Refractions of the Atmofphere, diftant Objects on the Horizon always appear higher than really they are, and therefore may be feen at a greater Diftance. But this will vary according to the various Conflitutions of the Air; an

Object which at Break of Day has appeared in the Level, and fometimes above it, has afterwards, when the Sun was up, appeared below it; and, on the contrary, after the Setting of the Sun, Objects far diftant have appeared to be raifed fo fenfibly, that in lefs than half an Hour their apparent Height has been argmented more than three Minutes, by reafon of the Condenfation and Defcent of the Vapours, which increafe the Refraction. On the Sea, this Refraction is yet greater than upon Land, by which we are enabled to difcover Objects at a much greater Diftance than the Convexity of the Sea ought to permit, and even at a greater Diftance than upon Land; which is of great Ufe to difcover the Land, Rocks, $\delta^{\circ} \sigma_{\text {e }}$ which otherwife might not be obferved till it was too late; and thus, by the Refractioni of the Atmofphere, the vifible Horizon is enlarged, which is all one as if the terraqueous Globe was much larger than realiy it is.
§ 5. Thirdly, and lafly, Another Reafon why the Eyes are fituate in the Head is, That it is the moft convenient Place for their Defence and Security, being compofed of hard Bones, wherein are formed two large ftrong Sinufes or Sockets, commonly called Orbits, for the convenient lodging thofe tender Organs, and fecuring them againf external Inju-
Yol. I.

H
ries.
ries. Hence it is, that in thofe Creatures whofe Head, like their Eyes, and the reft of their Body, is foft, and without the Guard of Bones, Nature hath provided for this neceffary and tender Organ a wonderful kind of Guard, by endowing the Creature with a Power of withdrawing its Eyes into its Head, and lodging them in the fame Safety with its Body. We have a beautiful Example of this in Snails, whofe Eyes being contained in their four Horns, like fo many atramentous Spots, fitted to the Ends of their Horns, or rather to the Ends of thofe black Filaments or optic Nerves which are fheathed in their Horns, (as Dr. Power wordeth it (ObJ. 31. Pag. 36.) they can protrude or retract-them at Pleafure, as they have occafion to ufe or guard their Eyes.
\$6. If it fhould be afked, Why our Eyes are placed in the Fore-part of our Head, rather than on the Top of our Head, or behind? It is cafy to anfwer, That," had they been in the Top of our Head, we could then have feen the Heavens indeed, but the greateft Part of vifible Objects here on the Earth would have been hid from us. And with regard to Brates, their Nature is altogether repugnant to fuch a Situation ; as they gather their Food from the Ground, which their Sight in that Cafe could not have reached. In like manner, had our Eyes been placed behind, they could not have affifted

Chap. I. Of the Situation of the Eyc. 59
affifed us to walk forwards towards any Object, or to avoid the Dangers in our Way. It is therefore with good Reafon that the Eyes of all Animals are fituated in the Fore-part or Sideparts of their Head, according to the particular Occafions of particular Animals. In Man, and fome other Creatures, they are placed towards the Fore-part, to look directly forward chiefly; but withal they are fo ordered, as to take in nearly the whole Hemifphere before them; which is evidently the beft Situation that could poffibly have been given them, for enabling us to guide and direct our Steps, to avoid the Precipices and Dangers in our Way, and to fee and examine the Objects before us, towards which we are moved, and towards which our Hands are made to extend.

In Birds, and fome other Creatures, the Eyes are fo feated, as to take in nearly a whole Sphere, that they may the better feek their Food, and efcape Dangers. And in fome Creatures they are feated fo, as to fee beft behind them, or on each Side; whereby they are enabled to fee their Enemy that purfues them that Way, and fo make their Efcape. Thus, in Hares and Conneys, their Eyes are very protuberant, and placed fo much towards the Sides of their Head, that their two Eyes take in nearly. a whole Sphere; whereas in Dogs, that purfue them,
60. Of the Comnection of the Eyes. Book II. them, the Eyes are fet more forward in the Head, to look that Way, more than backward.

C H A P. II.

Of the Comnection of the Eyes.

Secti.UR Eyes being placed in the Orbits, are kept in that Situation by their Mufcles, the optic Nerves, and the Fat lining the Orbits; to all which our Eyes are attached, But that which chiefly connects the Eyes to their Orbits, is a Membrane called Conjunctiva or Adnata. This therefore I hall here only confider, omitting the others, which being lefs concerned in this Matter, fall more naturally to be confidered in another Place.
§ 2. The Conjunctiva takes its Origin from the Perioffeim, all round the Edge of the Orbit, and from thence is extended over the whole Fore-part of the Globe, till its Termination in the Edge of the Sclerotica adjoining to the Cornea, where of confequence it forms a parge Hole for the tranfparent Cornea, thro ${ }^{2}$ which the Iris and Pupil are feen. From its Gituation, it is called Adnata, and from its. Office, Conjuntiva.

Chap. II. Of the Comection of the Eyes. 6I

§ 3. This Membrane is nothing but a Continuation of the Perioferm lining the Orbits internally. It is covered externally with another Membrane; for, as is known to Anatomifts, the internal-Membrane of the Eye-lids at the Edge of the Orbit, folds back again over the outward Face of the Eye above the Conjunctiva, to which it adheres, and with which it terminates at the Edge of the Sclerotica, where the Sclerotica joins the Cornea.

Thefe two Membranes, becaufe of their clofs Union, appear to be only one, and are generally defcribed as fuch, under the Name of Membrana albuginea, fo called, becaufe they form the White of the Eye; tho in fact they are diftinct Membranes, the one a Continuation of the Periofteum, lining the Orbits internally, and the other of the inner Membrane of the Eye-lids, which, notwithftanding their ftrict Union, may eafily be feparated, and have their diftinct Origins clearly demonftrated.
\$ 4. If it fhould here be afked, For what Ends thefe Tunicles are made always of a fhining white Colour? It may be fufficient to anfwer: firft, That fuch a Colour adds greatly to the Beauty of the Eye and Countenance; and, fecondly, That, by furrounding the Pupil and Iris, this Colour, by its Oppofition, renders them more bright and confpicuous, by which Means we are better enabled to judge of the Direction

62 Of the Comnection of the Eyes. Book II.
Direction of the Eyes, and when any body looks at us; which in many cafes is of confiderable Ufe to us, and which could not be fo eafily known, were our Eyes all over of the fame Colour; as has been well obferved by that learned Mathematician, and great Philofopher, Joannes Keplerus. Hence, in Dogs, and fome other Creatures that have the Fore-part of their Eyes mofly of the fame Colour, it is extremely difficult for us to judge towards what Objeet their Eyes are turned, efpecially if they be at any confiderable Difance from us.
\$5. Thefe Membranes, efpecially the external one, coming from the Eye-lids, are fo full of Blood-veffels, and fo laxty extended over the Eye, that in violent Ophthalmia's, the White of the Eye is fometimes fwelled fo exceffively, as to cover all the Cornea; which I here take Notice of, becaufe it is ready not only to furprife, but to impofe on the unwary or unexperienced Oculift, as if, it were an incurable Excrefcence of the Cornca itfelf; whereas the Danger of fuch Ophthalmia's lies not fo much in the fwelling' of this Membrane, as in fome of the other Parts of the Eye, which, when affected at the fame time, nakes the Difeafe more or lefs dangerous, according as this or the other Part is more or lefs affected; all which may be known by the Sym-

Chap. II. Of the Comection of the Eyes. 63 ptoms, and is of the greatef Ufe to be obferved in Practice; as might eafily be fhown in a Variety of Cafes, were this a proper Place for fuch Inquiries.
§6. Befides thefe two Membranes, the Fore-part of the Globe is covered all over externally with a very thin tranfparent Aponeurofe or Surpeau, which not only covers, the Membrane which it has from the Eye-lids, but is alfo extended beyond it over the Cornea itfelf. The Pblyctene, which are fmall tranfparent Vefficles full of clear Water, and which are frequently obferved upon the Surface of the Cormea itfelf, as well as upon the White of the Eye, and even fometimes have their Centre in fome Part of that Circle of the Cornea where it joins the Sclerotis, and by that Means occupy at the fame time, both a Part of the White of the Eye, and a Part of the Cornea, are, amongft other Things that might be advanced, a convincing Proof of the Exiftence of this Cuticle or Surpenu, and of its Extention over the whole Cornea.

This Cuticle feems to me to be a Production of the Epidermis, or Scarf-fkin, which at the Edge of the Eye-lids folds inwards, fo as to cover the Infide of the Eye-lids, and at the Edge of the Orbit folds back again over the whole outward Face of the Eye. The Exuvia of Serpents, which are obferved to be

64 Of the Comection of the Eyes. Book II.
one continued Membrane that covered their whole Bodies, their Eyes, as well as the reft of their Body, is, amongft other Things that might be mentioned, a pretty ftrong Proof, not any of the Extention of this Cuticle over the whole Cornea, but affo of its being a Production of the Epidermis.
\$ 7. There is yet another Tunicle covering the Fore-part of the Globe, and connecting it to the Orbit, which had efcaped the Obfervation of moft Anatomifts, till Columbus took Notice of it, and which therefore, it is probable, had been confidered as a Part or Pellicle of the Conjunctiva, from which neverthelefs it is quite diftinct.

This Tunicle arifes from the Tendons of the four ftreight Mufcles of the Eye, and expanding itfelf over the Fore-part of the Globe, betwixt it and the Conjunciva, to both which it adheres, it terminates at the Edge of the Sclerotis, where it forms the Cornea. Columbus affumes the Honour of being the firft Difcoverer of this Tunicle, to which he has given no Name. Hence it is frequently called Tunica Innominata Columbi, tho' unjufly, becaufe it was known to Galen, as appears from the 2 d and 8th Chapters of his tenth Book De ufupartium. Others therefore, with better Reafon, call it Tunica Tendinea, becaufe formed of the Tendons of the four ftreight Mufcles,

Chap. II. Of the Correction of the Eyes. 65
Muscles, of which it is an Extenfion or A poneurofe. Fabricius ab Aquapendente is of opinion, that the Conjunctiva has its fining Whiteners from this tendinous Coat. But in this he has beet refuted by PLempius, who having separated there Coats, found the Conjunctiva of the fame fining white Colour it had before Separation, and which being opake, can receive no Change of Colour from this tendinous Coat lying behind it.

It is by thee Membranes chiefly that our Eyes are connected to their Orbits; and being foot, flexible and yielding, they do it in foch a manner as not in the leaf to impede their neceffary Motions.

CH A P. III.

Of the Form of the Eye.

Sect. I. $I \begin{aligned} & \mathrm{N} \text { all Animals that I know, the } \\ & \text { Eye is of a round globular Form. }\end{aligned}$ In Man and Quadrupeds it is almoft an exact Sphere; but in Birds and Fifhes it is flat and depreffed, both in its fore and back Part, and is rather Spheroidal than foetical.

Vol. I.
I
$\$ 2$.
§ 2. This round Figure is of all others the moft commodious for the Motion of this Organ; for all its Parts being nearly at the fame Diftance from its Centre, none of them can ftrike againft any Part of the Socket, or of the Fat which lines it, when the Eyes are moved; and therefore, by this Figure, our Eyes are well prepared to move every Way the Situation of Objects can require. And, Secondly, By this Figure, our Eyes are beft fitted to contain the Humours within, and to receive and refract the Rays of Light coming from Objêts without, fo as to form a Pieture of them on the Bottom of our Eyes, for caufing Vifion. This fcarce needs any Proof or Illuftration ; it being obvious, that, were it not for the Convexity of the Cornea, the Rays could not be made to converge fo as to pafs the Pupil, and form this Picture upon the Retina; as will appear more fully from what is to follow concerning the Manner of Vifion and the Ufe of the feveral Parts of the Eye; which I fhall not now anticipate, but fhall only notice what the famous Fryar Bacon has faid on this Head. His Words are: "Nam fieflet plance figure, Species rei majoris oculo non: poffet cadere perpendiculariter Juper eum. Cum ergo oculus videt maigna corpora, ut fere quartam Cali uno a/pectu, manifeflum eft, quod non poteft effe plane figura, nec alicujus nifi.:Pherice,
quoniann fuper fpharam parvam polfunt cadere perpendiculares infinite, gure a magno corpore veriunt, et tendunt in centrum fobara: Et fic magnum cor pús poteft ab oculo parvo videri. For the Demonfration of this, he hath given us a Figure in his Perfipectives, which I fhall not now confider. But,

Thirdly, To theie Reafons for the Sphericity of the Eye, I fhall add another, which is feldom attended to by Authors, viz. That the Diftance of the Retina or immediate Organ of Sight from the cryftalline Humour, may be every where fuch as is neceffary for receiving the Rays of Light which come from all the Points of the Object in their Focus. Every body knows, that there can be no diftinct Vifion, unlefs all the Rays which enter the Eye from the feveral Points of the Object be united by the Reflection of the Humours in fo many diftinct Points in the Bottom of the Eye; and therefore, was the Eye a Cube, or of any multangular Form, fome Parts of the Retina would be too far off, and fome too nigh, thefe refracting Humours, and fo could not but receive the feveral Pencils of Rays, fome before they meet in the Focus, and others after they meet, which would render the Images of Objects, and confequently Vifion, very confufed and indiftinct: But, by means of the fpherical

Figure

Figure of this little Organ, the Humours are not only commodioufly laid together for performing their Office of Refraction, but all the Parts of the Retina are placed at a due focal D iftance behind the Cbryfalline; which therefore muft regularly receive the Images of Objects from without, and by tranfmitting thiem to the Senforium, prevent that confufed and indiftinct Vifion, which would neceffarily happen, were the Eye of any other Figure. But for a full Demonftration of this Point, I muft refer to Opticians, who have demonftrated, $\mathrm{I} m \mathrm{o}$, That if an Arch of a Circle defcribed upon the Center of the Eye be looked at for an Object, its Image behind the Cbryfalline will be a fimilar concentricArch, whofe Length will be to the Length of the Object in the Ratio of their Diftances from the common Centre. 2 do , Ifa Atreight Line cutting the Axis of Vifion at right Angles be looked at for an Object, its Image behind the Chryfalline will be the Arch of an Ellipfis, whofe Axis coincides with the Axis of the Eye. From thefe Propofitions, which I muft not flay to demonftrate, it is obvious, that when the vifual Objee is convex, its Image behind the Chryfalline will be an Arch whofe Curvature muft be greater than either that of a Circle or an Ellip/is. From all which, it is extremely plain, that Objects of all Figures

Chap. IV. Of the Number of the Eyes. 69 are feen the more diftinctly that the Eye are fpherical, and consequently that this Figure is the very beet that could have been given to our Eyes.

C HAP. IV.

Of the Number of the Eyes.
SECT. I. A NOTHER thing remarkable in this noble Organ, is its Number, which is never left than two in any Inftance that I know of, and in forme it is more.

Pliny indeed, in his Natural Hifory, (Book It. Chap. 37.) tells us of a Sort of Heron with but one Eye: Inter aves (fays he) ardeolarum genere, quo Leucos vocant, alter oculo carer tradunt. There are Pliny's own Words; but not having feen it himfelf, he reports it only from Hear-fay, and therefore the Account is thought fabulous; as likewife what he tells us in the 30th Chapter of his 3d Book, concerning the King of the Nigre that hath but one Eye, and that in his Forehead,
$\$ 2$. The Advantages of having two Eyes are, by the generality of Anatomifts, confined to Two.
i/t, That the Sight may be rendered more ftrong and perfect; which indeed is a very good Reafon in Man, Dogs, Sheep, Oxen, and fuch other Creatures as look the fame Way with both Eyes; for fince each Eye apart impreffes the Mind with an Idea of the fame Object, the Impreffion muft be ftronger and more luminous, when both Eyes concur, than when only one; and confequently the Mind will receive a more ftrong, lively and perfect Idea of the Object in View:
§.3. To be affured that Objects appear brighter and fronger to both Eyes than to one alone, and to find to what Degree this Excefs of Brightnefs amounts, the learned Doctor Jurin has made feveral curious Experiments, which I fhall here relate, and that the rather, that it may be imagined that an Object feen with both Eyes fhould appear twice as bright and luminous, as when feen only by one ; which neverthelefs is contrary to Experience. The Experiments are as follows :

I laid a Slip of clean white Paper directly before me upon a Table, and applying the Side of a Book clofs to my right Temple, fo as the Book advanced confiderably more for-

Chap. IV. Of the Number of the Eyes.
ward than my Face, I held it in fuch manner as to hide from my Right-eye that Half of the Paper, which lay to my Right-hand, while the left Half of the Paper was feen by both Eyes without any Impediment.

Then looking at the Paper with both Eyes, I obferved it to be divided from Top to Bottom by a dark Line, and the Half of the Paper which lay to the Right-hand of this Line, to appear confiderably darker than the Half which lay to the Left-hand.

In looking at other Objects in the fame manner, as at the Wainfcot or the Cieling, I conftantly found that Part which was feen by one Eye only to appear manifeftly darker than that which was feen by both Eyes: And when the Book was applied to my left Temple, inftead of the right, the fame Difference was obferved; which fhewed my two Eyes to be of equal Goodnefs.

When Flooked in this Manner upon a Page of a Book divided into two Columns, I found the Column that was feen with both Eyes to be much plainer and more legible than that which was feen with one only; and this Difference was more confpicuous, when, in making the Experiment by Candle-light, the Book was at fuch a Diftance from the Candles, as that there was fcarce Light enough to read with both Eyes: For then the Column which
was feen with one Eye only, was not at all legible; but I could read the other, tho' with fome Difficulty.

Being now fully fatisfied, that an Object feen with both Eyes appeared brighter and Atronger than when viewed with one ; I next endeavoured to find to what Degree this Eixcefs of Brightnefs amounted; particularly whether there was as much Difference in the Brightnefs of an Object when feen with one Eye and with both, as when illuminated by one Candle and by two.

To this End, I fet upon a Table two Can* dles of equal Height, and burning to Appearance with equal Light, at about a Foot Diftance beyond a Slip :of white Paper lying before me, and about four Inches from one another, fo as that the Diftance between the Candles was parallel to the Slip of $\mathrm{Pa}-$ per.

Then I fet a Book upon one End between the Right-hand Candle and the Paper, fo as to caft a Shade from that Candle upon the Right-hand Half of the Paper: Thus the left:Half of the Paper was illuminate by two Candles, and the right by one only; confequently the left Half was twice as luminous as the right; and the Boundary between thofe two Halfs was

Chap. IV. Of the Number of the Eyes. 73
pretty well defined by the Edge of the Shade.

I then took another Book, and applied it to my left Temple in fuch a Manner as to hide the left and brighter Half of the Paper from my Left-eye; fo that the left Half was feen by my Right-eye only, while the other Half was feen by both Eyes: Now I expected that the right Half of the Paper, having the Light of one Candle only thrown upon it, but being feen with both Eyes, would appear as luminous as the left Half, which had twice as much Light caft upon it, but was feen by one Eye only. In which I found myifelf miftaken; for the left Half appeared much whiter and brighter than the right: Confequently an Object feen with both Eyes is nothing near twice as luminous, as when feen with one only.

Being defirous to know the Quantity of this Excefs of Brightnefs more exactly, I fixed a Slip of white Paper flat againft the Wainfcot by the help of Pins, and, at a Yard Diftance, I fet a Candle fo as that the Flame was about the fame Height with the Paper, and nearly oppofite to the Middle of it, but rather inclining to the right Side. At two Yards Diftance from the Paper, I placed another Candle, with its Flame at the fame Height, and oppofite to the Middle of the

> Vol. I.
> left

74 Of the Number of the Eyes. Book II.
left Half of the Paper. Then I fet up a Book fo as to cut off the Light of this fecond Candle from the left Half. of the Paper ; which Half therefore being illuminated by one Candle only, appeared confiderably darker than the right Half of the Paper on which both Candles fhone without Interruption.

The Difference in the Brightnefs of the two Halves of the Paper is eafily eftimated, by confidering that the fecond Candle, being at twice the Diftance, muft throw upon the right Half of the Paper juft a Quarter of the Light that was caft upon the fame Half by the nearer Candle; and confequently that the luminoufnefs of the right Half of the Paper was to that of the left Half, as five to four.

Things being thus difpofed, and the Candles burning with equal Brightnefs, I applied a Book to my right Temple, fo as to hide the right Half of the Paper from the Right-eye; then looking at the Paper with both Eyes, the right Half of it, which had five Degrees of Light, and was feen by the Left-eye only, appeared manifeftly whiter than the left Half, which had four Degrees of Light, and was feen by both Eyes. Confequently, an Object feen with both Eyes is not a Quarter Part more luminous than when feen with one only.

After

Chap. IV. Of the Number of the Eyes. 75
After the fame Manner, by fetting the fecond Candic at three Yards Diftance from the Paper, I found that the right Half of the Paper, which then had ten Portions of Light thrown upon it, and was feen by one Eye, appeared fomething whiter than the left Half, which was illuminated by nine Portions of Light, and was feen by both Eyes.

When I removed the fame Candle one foot further, fo that the Diftances of the two Candles from the Paper were refpectively as 3 and ro, and confequently the Quantities of Light they threw upon the right Half of the Paper were as 100 and 9 refpectively, i. e. nearly as II to I; the right Half of the Paper feen with one Eye only, feemed ftill a little whiter than the left Half feen with both.

When the fecond Candle was fet at the Diftance of four Yards from the Paper, the right Half of the Paper feen with one Eye, appeared a little darker than the left Half feen with both Eyes.

Hence it follows, that when the fecond Candle is about ir Foot diftant from the Paper, the right Half feen with one Eye, and the left Half feen with both Eyes, muft appear of an equal Whitenefs. Coniequently, an Object feen with both Eyes appears brighter than when feen with one only by about a I 3 th Part; but it would be difficuit

76 Of the. Number of the Eyes. Book II.
to make the Experiment exaclly. So far Dr. Jurin.
§ 4. Secondly, A Second Advantage we reap from the Number of our Eyes, is, that when one of them is loft or hurt, the other fill officiates; which is a moft ufeful Provifion for the Misfortune of lofing one of thofe noble and moft neceffary Organs. But,
§ 5. Thirdly, To thefe two Advantages, Optical Writers add a third, that we reap from the Duplicity of our Eyes, which is no lefs confiderable than any of the former, and confifts in our being thereby enabled to judge with more Certainty of the Diftance of Objects. I fhall afterwards have occafion to explain fix Means which concur for our judging of the Diftance of Objects, of all which the moft univerfal, and frequently the moft fure, is the Angle which the Optic Axes make at that Point of the Object to which our Eyes are directed: When this Angle is very great, we fee the Object very near; and, on the contrary, when it is very fmall, we fee it at a great Diftance ; and the Change which is made in the Situation of our Eyes, according to the Change of this Angle, is a Mean our Mind makes ufe of for to judge of the Diftance and Proximity of Objects: For our two Eyes are like two different Stations in Longimetry, by the Affiftance of which

Chap. IV. Of the Number of the Eyes. 77
which Diftances are taken; whence it follows, that Creatures that look differently with their Eyes, as Fifhes, Fowls, the Hare, Chamelion, Wr. cannot judge of the Diftance of Objects from this Angle, and therefore muft be more liable to Miftakes than we are; yet Nature has provided them with two Eyes, that their Sight might not be too much limited, but that they might fee Objects equally well on both Sides, and thereby be better enabled to feek their Food and efcape Dangers. Whence alfo it follows, that thofe who are blind of one Eye, muft be liable to Miftakes in all Actions that require that the Diftance be exactly diftinguifhed, as in pouring Liquor into a Glafs, fnuffing a Candle, threading a Needle, O\%. of which that great Improver of natural Knowledge, the famous Mr. Bovie, has given us feveral Inftances in his Obfervations upon vitiated Sight. He has indeed obferved, that this Aptnefs to misjudge of Diftances and Situation gradually dirininfhes; the Reafon of which muft be, that by Ufe and Cuftom they gradually learn to make a better Ufe of the other Means for judging of Diftances. But it is impoffible they can ever come to judge as well of them with one Eye, as they did with both.
§6. As in all Animals the Number of their Eyes is never lefs than two, fo in fome Creatures

78 Of the Number of the Eyes. Book II.
Creatures it is more; and this always happens when Nature hath denied any Motion either to the Head or the Eyes; which is a very wonderful Provifion the hath made for the Immobility of thefe Parts. We have a beautiful Infance of this in Spiders, who having no Neck, cannot move their Head, but have this Defect fupplied by the Number of their Eyes, which in fome are four, in fome fix, and in fome eight, by which they can fee every Way, and catch their Prey per falium, without any Motion of their Head, which Motion would have fcarred away the timorous Fly on which they Prey.

Another Inftance of this Kind may be found in the immoveable Eyes of Flies, Wafps, boc: which being a common Entertainment with the Microfcope, every body knows that their Cornea, is a curious Piece of Lattice-work, in which this is remarkable, that every Foramen or Pupil is of a lenticular Nature; fo that we fee Objects thro's them topfey turvey, as thro' fo many convex Glaffes. This lenticular Power of the Cornea fupplies, as I imagine, the Place of the Cryftalline, which feems to be wanting in thofe Creatures; and it is probable, that every Lens of the Cornea hath a diftinct Branch of the optic Nerve miniftring to it, and rendering it as fo many diftinct Eyes, whereby thofe Creatures are enabled to fee

Chap.IV. Of the Nimiber of the Eycs. 79
very accurately every Way without any Interval of Time, or Trouble to move the Eye towards Objects: So that, as moft Animals are binocular, and Spiders for the moft Part octonocular, fo Flies, $\mathrm{E}^{\circ} c$. are multocular, having in effect as many Eyes as there are Perforations in their Cornea; by which Means, as other Creatures are obliged to turn their Eyes to Objects, thefe have fome or other of their Eyes ready placed towards Objects nearly all round them. Thus particularly it is in the Dragon-fly (Libella) the greateft Part of whofe Head is poffefled by its Eyes, which is of excellent Ufe to that predacious Infect, for the ready feeing and darting at fmall Flies all round it, on which it preys. And thus provident Nature has, with great Induftry and Art, provided for the Immobility of the Head and Eyes.

C H A P. V.

Of the Motions of the Eye.

SECT.I. $\begin{aligned} & \text { HE Motions of the Eye are } \\ & \text { either external or internal. }\end{aligned}$
I call external thefe Motions performed by

80 Of the Number of the Eyes. Book II.
its four ftreight and two oblique Mufcles, whereby the whole Globe of the Eye changes its Situation or Direction. And by its internal Motions, I underfand thofe Motions which only happen to fome of its internal Parts, fuch as the Cryfalline and Iris, or to the whole Eye, when it changes its fpherical Figure, and becomes oblong or flat.

The external Motions fall to be explained here; but the internal ones will fall more naturally to be explained afterwards, in treating of the Manner of Vifion, and the Ufe of the feveral Parts of the Eye.

The fpherical Figure of our Eyes, and their loofe Connection to the Edge of the Orbit by the Tunica Conjunctiva, which is foft, flexible and yeilding, does excellently difpofe them to be moved this or the other Way, according to the Situation of the Object we would view; and befides there is a great deal of Fat placed all round the Globe, betwixt it and the Orbit, which lubricates and foftens the Eye, and renders its Motions more eafy.
§ 2. Now the external Motions of the Eye, are, as we before hinted, performed by means of fix Mufcles, whereof four are ftreight, and two oblique. Gabriel Faliopius (in his Obfervationes Anatomice) is among the firft that: has given us a genuine Defcription

Chap. V. Of the Motions of the Eye. 8I
of the Mufcles of the Eye: For before him not only Galen but Vesalius himfelf has grofsly erred in the Defcription of the oblique Mufcles, and in affigning feven Mufcles to the human Eye; on which Account Realdus Columbus (de Re Anatom. lib. 5. cap. 8.) does indeed jufly reprehend them, tho', at the fame time, he commits no lefs an Error himfelf, not only in fuppofing that the Obliquus inferior begins and ends in the Cornea of the Eye, but alfo in imagining, contrary to what GALeN and VesaliUs teach, that the Obliquus fuperior belongs. to the Eye-lids.
§ 3. The firft of the four freight Mufcles is fituated upon the fuperior Part of the Globe upon which it lies. It pulleth up the Eye when we look up, and is therefore called Attollens or Superbus, it being one of the chief Marks of a haughty Difpofition to look high; wherefore its oppofite Mufcle is called Humilis. But Casserius Placentinus thinks the Motion of the upper Eye-lids denotes thefe Difpofitions more fignificantly; for, fays he, (lib. 5. cap. 18.) 2ui enim hanc elatam babent (fpeaking of the upper Eye-lids) Juperbi do feroces funt, qui vero depreffam ac dimidium fere oculum claudentem, ita ut terram adpicere videantur, lumiles do mites funt. For which Reafon Willis (in

Vol.I. L his

82 Of the Motions of the Eye. Book II.
his Anima Brutorum, cap. 15.) chufes rather to call them Pii aut Devoti. Quia in precatione intenfa, fays he, oculum valde attollunt; quare Hypocritis, qui fanctitatis Speciem affectant, in more eft, oculum ita evolvere, ut albo fere tantum conjpeçapo pupilla occultetur.

The fecond, as before hinted, is directly oppofite to the Attollens, and is fituated upon the under Part of the Eye, which it pulls down, and is therefore called Deprimens or Humilis.

The third and fourth are towards the Sides of the Eye, and draw it towards the Nofe, or from it towards the little Angle. That which draws it towards the Nofe is called Adductor or Bibitorius, becaufe, in drinking, the Eyes are turned inwards to the great Angle for viewing the Drink. That which pulls it from the Nofe towards the little Angle, is called Abductor or Indignabundus, becaufe it is made Ufe of in thofe lateral or fquint Views that denote a fcornful Refentment.

All thefe four Mufcles arife from the Circumference of the Hole in the Bottom of the Orbit, thro' which the optic Nerves pafs; and advancing by the four cardinal Parts of the Eye, terminate by four broad Tendons in the Sclerotis.

Chap. V. Of the Motions of the Eye. 83
There Tendons form a large Aponeurofe, which is fpread over the outward Face of the Eye under the Conjunctiva, to which it alfo adheres, and terminates at the Edge of the Sclerotis, where it forms the Cornea. Columbus pretends to be the firf Difcoverer of this Tunicle, to which he has given no Name. Hence it is frequently named Tunica innominata Columbi, tho' unjuftly; becaufe it was known to Galen, as appears from the 2 d and 8th Chapters of his Ioth Book de Ufu Partium. Others therefore, with better Reafon, call it Tunica Tendinea, becaufe formed of the Tendons of the four ftraight Mufcles. Aquapendens is of opinion, that the White of the Eye has its Colour from this Membrane: But the Conjunctiva, and the Tunicle which comes from the inner Membrane of the Eye-lids, do likewife concur, as has been demonftrated by Plempius (Ophtbalmographia, lib. i. cap. 8.)

When the four ftreight Mufeles of the Eye act feparately, they pull the Globe up or down, to or from the Nofe, according to the different Situation of Objects we would view. But when the Superbus and Adductor or Abductor act together, or when the Humilis and Adductor or Abductor act together, they perform the oblique Motions,

84 Of the Motions of the Eye. Book II.
ons, which have been attributed to the oblique Mufcles; and when all four act together, they draw the Eye inwards towards the Bottom of the Orbit, and keep it fixed in an equal Situation; which is therefore by Phyficians called its Tonic Motion.

Some are likewife of opinion, that when all thofe four Mufcles act together, the Bulb of the Eye is comprefled, and its Axis is lengthened, when Objects are too near us; while others give them a quite contrary Action. But this we only mention by the Way, referving it to be further confidered when we come to examine the inward Motions of this Organ.

The oblique Mufcles of the Eye are two in Number, where of one is called Obliquus major or fuperior, the other Obliquus minor or inferior; they receive their Denomination from their oblique Pofition and Courfe.

The Obliquus major, becaufe of its Length, is fometimes called Longifimus Oculi; it arifes from the Edge of the Hole in the Bottom of the Orbit, that tranfmits the Optic Nerve, between the Elevator and AdduCior, from whence it runs obliquely to the great Cantious: In the upper Part of which, near the Brink, there is a cartilaginous Ring

Chap. V. Of the Motions of the Eye. 85
Ring or Trooblea affixed to the Os Frontis, thro' which it paffes its Tendon; from whence turning backwards, it is inferted into the Tumica fclerotica, towards the back Part of the Bulb of the Eye, in the Middle of the Diftance between the Termination of the Attollens and the Optic Nerve.

This Trocblea, thro' which this Mufcle paffes its Tendon, was firft difcovered by the great Fallopius, who therefore jufly receives the Honour due to fuch a Difcovery; tho' Riolanus does likewife afcribe it to his Cotemporary Rondeletius. From it fometimes the Mufcle receives its Name, and is called Trochlearis: When it acts, it rolls the Eye about its Axis towards the Nofe, and at the fame time draws it forwards, and turns its Pupil downwards.

The fecond of thefe oblique Mufcles, becaufe of its being the fhorteft Mufcle of the Eye, is frequently defribed under the Name of Breviflimus Oculi. It takes its Origin from the lower Part of the Orbit in its Infide near its Edge; and afcending obliquely by the outer Corner of the Eye, it is inferted into the Sclerotis near the Implantation of the former, directly betwixt the Abducens and optic Nerve.

The

86 Of the Motions of the Eye. Book II.
The Action of this Mufcle is to roll the Eye about its Axis from the Nofe, and at the fame time to draw it forwards, and direct its Pupil upwards.

Thefe two oblique Mufcles are by fome called Circumagentes and Amatorii (Amoureux) from their Actions in winding and rolling the Eye about, which Motions we call Ogling. But the French Academift Mr. Perrault (de Mouvement des Yeux) will not allow that the Eyes have ever any Motion round their Axis, becaufe he could never obferve it in the Eyes of Tortoifes, which have fome fixed Spots that may ferve for rendering fuch Motions obvious, but chiefly becaufe he does not fee what Advantage we could reap therefrom. But, were Nature to be confined and limited in her Operations by our imperfect Views of the Advantages of her Actions, we fhould frequently deny the moft evident Facts in the World.
§ 6. But that Perrault's Authority may not miflead fuch as have not accurately obferved the Origin, Progrefs and Infertion of thefe Mufcles, it may be proper to obferve, that the learned Mr. Mariotte (in his Nouvelle Decouverte touchant la Vue) has demonftrated beyond Difpute, that that Part of the Bottom of our Eyes, where the optic Nerves enter them, is infenfible; and that the

Rays

Chap. V. Of the Motions of the Eye. 87
Rays of Light, which fall thereon, are intirely loft, without giving us any Idea of the Object from whence they came. Now, our optic Nerves enter the Eye, not in the Middle oppofite to the Pupil, but a little on the Infide towards the Nofe: Hence Objects placed a little on the Outfide of the optic Axis, if not over large, would be altogether invifible; becaufe the Rays which come from them fall upon that infenfible Part of the Bottom of our Eyes, at which the optic Nerves enter; but, by the Circumrotation of our Eyes round their Axis, this infenfible Part may be turned afide, and the Rays of Light which would have been loft, in falling upon it, may now, at leaft in part, fall upon the fenfible Part of our Retina; and therefore the Object, which otherwife would have been intirely invifible to that Eye, may, at leaft in part, become vifible, which is a confiderable Advantage, as every one muft fee.

I am not ignorant, that there are many who have denied this oblique Infertion of our optic Nerves. Wilitis and Briggs tell us, that not only in Man, but alfo in Dogs, Cats, and all the more fagacious Creatures, they enter the Globe at its $A x i$, directly oppofite to the Pupilla: But the Labour and Induftry of later and more ac-

88 Of the Motions of the Eye. Book II.
curate Anatomifts have long ago freed us from this Miftake; and tho this Obliquity is confiderably lefs in Man than in Oxen, Sheep, Swine, and the greateft Part of Birds and Fifhes, yet no one who fhall take the Pains to examine a human Eye can mifs obferving it.

There are indeed fome Creatures, fuch as the Porcupine and Sea-calf, that have the optic Nerves inferted into the Axis of their Eyes: Which fingle Fact more effectually overturns Mariotte's Hypothefis of the Choroides being the principal and immediate Organ of Sight, than all the fubtile Reafoning of Messrs. Pecquet and Perrault, his greatef Oppofers. Neither it is poffible that this Defect in our Sight, where the optic Nerves enter, can arife from the Want of the Choroides in this Place, which according to de la Mire's Reafoning againft Mariot te (See his Differtation, Sur les differens Accidens de la Vue) ought to receive the Impreffion from the Rays of Light (which, according to him, pafs thro' the tranfparent Retiva, without producing Vifion) and communicate it to the Retina, with that Difpofition and Modification which is proper for Sight, juft as the firal Lamella of the Ear receives the Impreffions of the Air, to be communicated to the auditory Nerve, for exciting in

Chap. V. Of the Motions of the Eye. 89
the Mind the Idea of Sound. For, were this trie, then to thefe juft now named Animals, all Objects would become invifible, to which their Eyes are directly turned, becaufe the Choroides is wanting in that Place where their Image falls; which being contrary to Experience, it remains that fome other Caufe be affigned for that Defect of our Sight, than the Want of the Choroides. But to return.
§ 7. Tho the Action of thefe two oblique Mufcles feems pretty evident, yet there is fcarce any. Part of the human Body about which Anatomifts have differed more, than in affigning them their proper Offices. The famous Mr. CowPER is among the firf I know who began to reafon juftly about them. But it would take up too much Time to enumerate and confute the feveral Opinions of different Authors; and therefore I fhall content myfelf, after what has been already faid of each Mufcle acting apart, to confider what happens, when both act at the fame Time.

Mr. Cowper, in his Myotomia reformata, has well obferved, That when any of the ftraight Mufcles act, they will rather draw the Eye rinwards, within the Orbit, than turn it either fideways, or upwards, or downwards, were it not at the fame time drawn Vol.I. M outwards
outwards by fome equal Force. Now the above defcribed Situation of thefe oblique Mafcles, excellently qualifies them for keeping the Globe from being retracted, when any of its ftraight Mufcles act: For by their joint Contraction they maft pull the Eye outward from the Bottom of the Orbit; and keep it fufpended as upon an Axis, for the better receiving the Motions of the ftreight Mufcles: And this is what we think the principal Ufe of its oblique Mufcles, when acting together, feeing they combine both in this, while they are Antagonifts to one another in their other Actions.
§8. Aquapendent (in his Treatife, de Oculo, cap. xi.) obferves, That in the Pike, the oblique Mufcles decuffate one another in form of a Crofs; and Perrault (dut Mouvement des $Y_{e u x}$) tellis us, That they are both in the under Part of the Eye; and that becaufe in fuch rapacious Animals, who frequently dive in purfuit of their Prey, they have occafion more than others to turn their Eyes downwards. But this we chiefly take notice of, becaufe it may afterwards be of fome Ufe for determining how the Eye changes its Conformation, and adapts itfelf to the different Diftances of Objects, which fome have afcribed to the Action of thofe Mufcles.

Chap. V. Of the Motions of the Eye. 9 I
§ 9. Cowper (in his Myotomia. reformata) quotes Mulifiete, for defcribing a feventh Mufcle, which he calls the fifth right Mufcle, whofe Office he confines to the Motion of the Trochilea. But, upon Examination, no fuch Mufcle is, to be found in the human Eye; and it is poffible that Mullinete might have been led into this Miftake, by that Part of the Orbicularis Palpebrarum, which adheres to the Trochlea, or rather by what he might have obferved in Dogs, who have a fmall Mufcle arifing near the Origin of the Obliquus major, and inferting itfelf by a very flender Tendon into the Trocblea, to whofe Motions it is fubfervient, as Douglas obferves (Myographia comparata, cat. vi.)
§ io. Befides thefe Mufcles already defcribed, Quadrupeds are provided with another, commonly called Sulpenforius, from its affigned Ufe in fufpending the Eyes of fuch Animals, as go much with their Heads hanging down towards the Ground. This Mufcle, among other Things, difcovers that Vesalius has not been altogether free from a Fault, which he condemns very feverely in Galen, to wit, the obtruding on us the Organs of Brutes, inftead of thofe of the human Body, which he pretends to defcribe; for he has both defcribed and painted it
as belonging to Man, in whom it is never found.

This Mufcle arifes from the Circumference of the Hole in the Bottom of the Orbit thro' which the optic Nerve paffes, and goes directly along the optic Nerve, which it embraces and furrounds on all Hands, and is inferted into the back Part of the Sclerotis, all round the optic Nerve, betwixt it and the Termination of the ftreight Mufcles. Fifhes and Fowls commonly want this Mufcle, as well as Man; but Oxen, Horfe, Sheep, Hogs, and, fo far as has been obferved, all Quadrupeds are provided therewith, tho' in all it is not of the fame Structure, being fometimes compofed of two, three or four diftinct Mufcles, as AqUAPENdent (de Oculo, cap. xi.) obferves.
§ if. Aquapendent, Willis and Briggs, with the greateft Part of our modern Anatomifts, are of opinion, that the only Ufe of this Mufcle, is to draw the Eye inwards, towards the Bottom of the Orbit, and to keep it fufpended, that when the Eye hangs down, as often happens in Quadrupeds, who gather their Food from the Ground, it may not fall too much out of the Orbit, or by its Weight ftretch and fatigue the optic Nerve, to which it is attached. Hence they call it Sufpenforius, as has been before obferved.

Chap. V. Of the Motions of the Eyc. 93
ferved. But this Action may in part be fupplied by the ftreight Mufcles acting together; and, befides, a Ligament would have been fufficient for fufpending the Eye; and therefore it is probable that this Mufcle has fome other Ufe.

Dr. Tyson finding this Mufcle in the Porpefs, as well as in Quadrupeds, thinks its Ufe is not to fufpend the Bulb of the Eye, but rather by its equal Contraction of the Sclerotis, to which it is affixed, to render the Ball of the Eye more or lefs fpherical, according to the different Diftances of Objects, concerning which you may confult his Anatomy of the Porpefs, ($p .39$.$) But it is not abfo-$ lutely certain that the Figure of the Eye can be changed by the Action of this Múfcle, and that for Reafons afterwards to be mentioned, when we come to confider its internal Motions ; and befides, the neceffary Change of our Eyes is well provided for by another Mechanifm, as will alfo appear in its proper Place.

I think therefore that the Ufe of this Mufcle is not only to fufpend the Eye, and preferve the optic Nerve from being too much ftretched, but principally to affift the ftreight Mufcles in moving the Eye, according as its different Fibres act; e. g. when its fuperior Fibres act, they affift the Attollens in pulling

94 Of the Motions of the Eye. Book II.
the Eye up; when its internal Fibres next the Nofe act, they affift the Adducens; and when both together, or thofe betwixt them act, they pull the Eye obliquely upwards towards the Nofe, and confequently affift the Attollens and Adducens in their joint Action of moving the Eye obliquely. Comparative Anatomy makes this Opinion very probable; for, in feveral Animals, as we have before hinted, it is divided into feveral diftinct Mufcles, whereof Aquapendent has obferved fometimes three and fometimes four in the Eyes of Sheep; and Douglas tells us, That in a Dog it is divided fometimes into four, and fometimes into five, which have as many diftinct Infertions into the Sclerotis. Mr. Perrault's Obfervation on this Mufcle does likewife very much confirm this Opinion. (See his Treatife, du Mouvement des $\mathrm{r}_{\text {cux. }}$.) His words tranflated are, "In effect we may "fay, (fpeaking of this Mufcle) that it con" tributes to the Action of the ftreight Muf" cles according as its Fibres act differently, " there being feveral Creatures, fuch as the "Bear, Pole-cat, (l'Ours, la Fouine) and many " others, where this Mufcle is feparated into "four, having as many different Infertions, " which being betwixt the Infertions of the " four ftreight Mufcles, may ferve for the " oblique Motions of the Eye, which in

Chap. V. Of the Motions of the Eye.
" Man are chiefly performed by the Combi" nation, or fucceffive Action of the four " ftreight Mufcles."
§ 12. Having examined what belongs to the Mechanifm of the exterzal Motions of our Eyes, I fhall now beg leave to add fome Reflexions thereon, which, I flatter myfelf, will not be altogether unacceptable to fome Readers. And,
I. When Nature hath denied the Head or Eyes any Motion, it is to be obferved, that the has with great Care and Induftry provided for this Defect. Dr. Power's microfcopical Obfervations furnifh us with a beautiful Example of this: His Words are: (Obfervat. 8.) "The firf eminent Thing we found in the "Houfe-fider:swere their Eyes, which in fome " were four, in fome fix, and in fome eight, " according to the Proportion of their Bulk " and the Longity of their Legs. Thefe Eyes " are placed all in the Fore-front of their "Head, (which is round and without any " Neck) all diaphanous and tranfparent, like " a Locket of Diamonds, or a Set of round

* Cryftal-beads, \&oc. Neither wonder why "Providence fhould be fo anomalous in this
"Animal more than in any other we know
" of, (Argus's Head being fixed to Aracmne's
"Shoulders:) For, $1 f$, Since they wanting
" a Neck cannot move their Head, it is re-

96 Of the Motions of the Eye. Book II.
" quifite that Defect fhould be fupplied by the " Multiplicity of Eyes. 2dly, Since they
" were to live by catching fo nimble a Prey "as a Fly is, they ought to fee her every "Way, and to take her per faltum (as they " do) without any Motion of their Head " to difcover her; which, Motion would have "fcarred away fo timorous an Infect."

It is therefore with good Reafon that MuFFET, fpeaking of this Lydian Spinfrefs, that proud Madam, whom, for her Rivalhip, the Fable makes Pallas transform into a Spider', fays of thofe Philofophers that held them blind, Sane cacutiunt illi fummo meridie, qui videre itfas rion vident neque, intelligunt: Which he might have faid with far better Reafon, if his Eyes had been but affifted with one of our common Microfcopes.

To this Purpofe alfo belongs the furprifingly beautiful and curious Mechanifm obfervable in the immoveable Eyes of Flies, Wafps, © σ. They nearly refemble two protuberant Hemifpheres, each confifting of a prodigious Number of other little Segments of a Sphere; all which Segments are perforated by a Hole, which may be called: their Pupil, in which this is remarkable, that every Foramen or Pupil is of a lenticular Nature, fo that we fee Objects through them topley-turvey, as thro' fo many convex Glaffes; yea, they become a
fmall Telefcope, when there is a due focal $\mathrm{Di}-$ ftance between them and the Lens of a Microfcope. Leu enhoek's Obfervations make it probable, that every Lens of the Cornea fupplies the place of the cryjfalline Humour, which feems to be wanting in thofe Creatures, and that each has a difting Branch of the optic Nerve anfwering to it, upon which the Images are painted; fo that as moft Animals are binocular, and Spiders for the moft part octonocular, fo Flies, for. are multocular, having, in effect, as many Eyes as there are Perforations in the Cornea. By which Means, as other Creatures, but with two Eyes, are obliged, by the Contraction of the Mufcles above defrribed, to turn their Eyes to Objects, thefe have fome or other of their Pupils always ready placed towards Objects nearly all round them; whence they are fo far from being denied any Benefit of this noble and moft neceflary Senfe of Sight, that they have probably more of it than other Creatures, anfwering to their Neceffities and Way of living: And thus provident Nature has with great Induftry and Art provided for the Immobility of the Head and Eyes.
§ I3. II. As in Man and moft other Creatures the Eyes are fituated in the Head, becaufe, amongtt other Reafons, it is the moft convenient Place for their Defence and Security,
Vou. I. N being

98 Of the Motions of the Eye. Book II.
being compofed of hard Bones, wherein are formed two large ftrong Sinufes or Sockets, commonly calied Orbits, for the convenient lodging of thefe tender Organs, and fecuring them againft external Injuries; fo in thofe Creatures whofe Head, like their Eyes and the reft of their Body, is foft and without Bones, Nature hath provided for this neceffary and tender Organ, a wonderful Kind of Guard, by endowing the Creature with a Faculty of withdrawing its Eyes into its Head, and lodging them in the fame Safety with its Body. We have a very beautiful Example of this in Snails, whofe Eyes are lodged in their four Horns, like atramentous Spots, one at the End of each Horn, which they can retract at Pleafure when in any Danger. I know the learned Perrault (in his Mechanique des Animaux) feems to doubt of Snails having Eiyes. And Dr. Brown ranks this Conceit of the Eyes of Snails amongft the vulgar Errors of the Multitude; but a good Microfcope would foon have fhewn him his own Error. Thofe that defire further Satisfaction in this Particular, may confult Dr. Power's Obfervations, and Lifter de Cochleis et Limacibus.

If it 乌hould be here afked, Whence it is that Fifhes, whofe Eyes are not guarded and defended by Eye-lids, fhould not alfo have a

Power of retracting their Eyes for their Defence and Security? To this I anfiver, That if we reflect on the Hardnefs of the Cornea, which, in all Animals that want Eye-lids, is commonly much harder than in Man, and therefore is not to be hurt by fuch Particles as their Eyes are commonly expofed to, we muft fee that fuch a Mechanifm would have been ufelefs: And befides, in fome cruftaceous Animals, whofe Occafions and Manner of living perhaps expofe their Eyes to greater Dangers and Inconveniencies, their Eyes are well fecured by deep Sinufes, into which, as into a fafe Chamber, they can retract their Eyes upon the Approach of any Danger, as has been well obferved by Fabricius ab Aquapendente (in his Treatife de Oculo, cat. I4.)
§ 14. Something of a Mechanifm fimilar to this has alfo been thought to obtain in the Eyes of Moles, which are not blind, as Aristotle, Pliny, Severinus, \&oc. would perfuade us; but being provided with little black Eyes, about the Bignefs of a fmall Pinhead, in which not only the aqueous, vitreous and cryfalline Humours, but alfo the Ligamentum ciliare, copped or conical Cormen, with the round Pupil and optic Nerve, have been manifeftly difcerned, they muft neceffarily ferve to guide and fecure it, when it chances

Ioo Of the Motions of the Eye. Book II.
to be above Ground. But becaufe this Aninial lives moft under Ground, which it digs and penetrates, it was neceffary their Eyes fhould be well guarded and defended againft: the many Dangers and Inconveniencies to which their Manner of living expofes them; and this is the Reafon why their Eyes are fo fmall, and that they are fituated fo far in the Head, and covered fo ftrongly with Hair, that they can be of no Service to them, unlefs they be poffeffed of a Power of protruding and retracting them at Pleafure, more or lefs as they have more or lefs Occafion to ufe or guard their Eyes, as has been obferved by Borrichius, Epif. Bartholin. 96. cent. iv. Mr. Derham's Plyyfico-theology, book iv. chap. 2. \&xc.

I know fome have doubted whether what we take to be Eyes in Moles are fuch or no, and others have exprefsly denied any Humours to be therein; yet fo accurate an Anatomift was Galen for his Time, that he tells us that Moles have Eyes, the cryftalline and vitreous Humours, encompaffed with Tunics, agreeable to what has been fince more diftinctly feen by the Help of Microfcopes, (See Galen, de Ufiu Partizm, lib. iv. cap. 6.)
\$.15. The third and laft Reflection we fall make upon the Motion of our Eyes, is what regards a Problem which has very much perplexed

Chap. V. Of the Motions of the Eye. IoI perplexed both Phyficians and Philofophers, viz. What is the Caufe of the uniform Motion of both Eyes?

In fome Creatures, fuch as Fifhes, Birds, and among Quadrupeds, the Hare, Chamelion, for. the Eyes are moved differently, the one towards one Object, and the other towards another: But in Man, Sheep, Oxen, and Dogs, the Motions are fo uniform, that they never fail to turn both towards the fame Place. Hence, in Operations upon the Eye, that require it to be kept immoveable for fome Time, it is neceffary to tie up the found Eye with Comprefs and Bandage, by which Means the other is eafier kept fixed and immoveable.
§ 16. The final Caufe of this uniform Motion of our Eyes is,
I. That the Sight might be thence rendered more frong and perfect; for fince each Eye apart impreffes the Mind with an Idea of the fame Objert, the Impreflion muft be more frong and lively when both Eyes concur, than when only one; and confequently the Mind muft receive a more ftrong, lively and perfect Idea of the Object in View, as is agreable to Experience: And that both may concur, it is neceffary they move uniformly; for tho' the Retina or immediate Organ of Vifion be expanded upon the whole Bot-

102 Of, the Motions of the Eye. Book II.
tom of the Eye as far as the Ligamentuma ciliare, yet nothing is diftinctly and clearly feen but what the Eye is directed to. Thus, in viewing any Word, fuch as Medicine, if the Eye be directed to the firft Letter M, and keep itfelf fixed thereon for obferving it accurately, the other Letters will not then appear clear or diftinct, becaufe the feveral Pencils of Rays that come therefrom, fall too obliquely on the Cryftalline and other Humours of the Eye, to be accurately collected in fo many diftinct Points of the Rctina; and chiefly becaufe of a certain Degree of Hardnefs, Callofity or Infenfibility, that obtains in all Parts of the Retina, excepting towards the Axis of the Eye, directly oppofite to the Pupil. Hence it is, that to view any Object, and thence to receive the ftrongeft and moft lively Impreffions, it is always neceffary we turn our Eyes directly towards it, that its Picture may fall precifely upon this moft delicate and fenfible Part of the Organ, which is naturally in the Axis of the Eye. But if this mof fenfible and delicate Part happens, from a Fault in the firf Conformation, or from any other Caufe, not to be in the optic Axis, but a little off at a Side; then to fee an Object clearly, the Eye muft not be directed towards it, but a little to a Side,

Chap. V. Of the Motions of the Eyc. 103 that its Picture may fall on this moft fenfible Part of the Organ: And this may be one Caufe of Squinting, which, as is eafy to fee, muft be altogether incureable.

Now, though it is certain that only a very fmall part of an Object can at once be clearly and diftinctly feen, namely, that whofe Image on the Retina is in the Axis of the Eye; and that the other Parts of the Object, which have their Images painted at fome Difance from this fame Axis, are but faintly and obfcurely perceived, yet we are feldom fenfible of this Defect; and, in viewing any large Body, we are ready to imagine that we fee at the fame time all its Parts equally diftinct and clear: But this is a vulgar Error, and we are led into it from the quick and almoft continual Motion of the Eye, whereby it is fucceffively directed towards all the Parts of the Object in an Inftant of Time; for it is certain, that the Ideas of Objects, which we receive by Sight, do not prefently perifh, but are of a lafting Nature, as appears from what happens when a Coal of Fire is nimbly moved about in the Circumference of a Circle, which makes the whole Circumference appear like a Circle of Fire; becaufe the Idea of the Coal, excited in the Mind by the Rays of Light, are of a laft-

104 Of the Motions of the Eye. Book II.
ing Nature, and continue till the Coal of Fire in going round return to its former Place; and therefore, if our Eye takes no longer Time to direct itfelf fucceffively to all the fmall Parts of an Object, than what the Coal of Fire takes to go round, the Mind will diftinctly perceive all thofe Parts, without being fenfible of any Defect or Infenfibility in any Part of the Retina, becaufe the Idea of one Part continmes, till, by the Motion of the Eye, the Image of the other Parts be fucceffively received upon the fame moft fenfible Part of the Retima: And this is the Reafon why the Globe of the Eye moves fo quickly, and that its Mufcles have fuch a Quantity of Nerves to perform their Motions. But I go on.
§ I7. 2. A fecond Advantage we reap from the uniform Motion of our Eyes, which is yet more confiderable than the former, confifts in our being thereby enabled to judge with more Certainty of the Diftance of Objects.

There are fix Means which concur for our judging of the Diftance of Objects, of all which the molt univerfal and, frequently, the moft fure, is the Angle which the Rays of Light make at the Object in coming thence to our Eyes: When this Angle is very great, we fee the Object very near; and on the contrary, when it is very fmall, we fee it at
a great Diftance; and the Change, which happens in the Situation of our Eyes, according to the Change of this Angle, is a Mean which our Mind makes use of for judging of the Diftance and Proximity of Objects. To be perfuaded of the Truth of this, fufpend by a Thread a Ring, fo as its Side may be towards you, and its Hole look right and left, and taking a fmall Rod, crooked at the End, in your Hand, retire from the Ring two or three Paces, and having with one Hand covered one of your Eyes, endeavour with the other to pals the crooked End of your Rod thro' the Ring. This appears very eafy, and yet, upon Trial, perhaps once in a hundred times, you hall not fucceed, especially if you move the Rod. a little quickly. This furprifing Difficulty, which is found in paffing the Rod arifes, becaufe when one Eye is hut, the Angle which the Rays of Light make at the Object, in coming thence, to both Eyes, is not known; for in any Triangle, to know the Bigness of an Angle, it is not fufficient to know the Length of the Bare fubtending that Angle, and the Magnitude of the Angle which one of its Sides makes with that Bafe, as is known to Mathematicians; but it is alpo neceflary to know the other Angle which the other Side makes with the Bare:
Vol. I.

106 Of the Motions of the Eye. Book II.
But this can never be known but in opening both Eyes, and directing them to the Object; and therefore the Mind can never make ufe of its natural Geometry, for judging of the Diftance of the Ring, while one of the Eyes is fhut.
§ 18. From this we may fee the Ufe of having two Eyes placed at a certain Diftance from one another; for by Ufe we get a Habit of judging of the Diftance of Objects by the Direction of the Axes, which is fenfible to us, becaufe it depends on the Motion of the Eye that we feel. But other Creatures, that look differently with their Eyes, as Fifhes, Fowls, the Hare, Chamelion, doc. cannot judge of the Diftance of Objects from this Angle, and therefore muft be more liable to Miffakes than we are; yet Nature hath provided them with two Eyes, that their Sight might not be too much limited, but that they might fee Objeits equally well on both Sides, and thereby be better enabled to feek their Food, and avoid Dangers: Whence it is, that in fome Animals they are feated fo as to fee behind them, as well as on each Side. We have a very remarkable Example of this in Hares and Conies, whofe Eyes are very protuberant, and placed fo much towards the Sides of their Head, that their two Eyes take in nearly a whole Sphere;

Chap. V. Of the Motions of the Eye. 107
Sphere; whereas in Dogs that purfue them, the Eyes are fet more foreward in the Head to look that Way more than backward.

From this alfo we may fee, why we err fo frequently in the Judgments we form of the Magnitude of Objects feen only with one Eye: For, fince we judge not of Extenfion or Magnitude from the apparent Magnitude alone, but alfo from the apparent Diftance, it follows, that Objects feen with one Eye, muft appear fmaller or greater, as they are imagined nearer or further off. Thus a Planet viewed with a Telefcope, fometimes is judged near the Eye-glafs, and therefore appears very fmall ; while to others it appears very great, becaufe imagined a good Way beyond the Objective. The fame Thing happens in viewing one's felf in a great concave Mirror not too far off; when the one Eye is fhut, the Face does not appear very big, becaufe it is imagined at no greater Diftance than the Surface of the Mirror; but to both Eyes it appears a great deal bigger, becaufe it is then imagined much further off, as has been obferved by Monf. Mariotte (Traite des Coleurrs.)

It being therefore manifeft, That the Difpofition of our Eyes, which always accompanies the Angle formed of the vifual Rays that flow to both Pupils, and that cut

108 Of the Motions of the Eye. Book II. one another in that Point of the Object on which our Eyes are fixed, is one of the beft and moft univerfal Means we have for judging of the Diftance of Objects; it needs be no Surprife, that in very great Diftances, where the Diftance of our Eyes bears no fenfible Proportion to the Diftance of the Object, it flould be impoffible for us, by this, or any other Method, to judge rightly of the Diffance, becaufe the "Change that happens here to this Angle is fo fmall, as to be altogether infenfible.
Every body muft fee, that this Angle changes confiderably, when an Object that is only a Foot from our Eyes is tranfported to four; but if from four it be tranfported to eight, the Change is by much lefs fenfible; if from eight to twelve, it is yet lefs; if from a thoufand to an hundred thoufand, it is fcarce any more fenfible, nay not tho' the Diftance be increafed from a thoufand to an infinite Space.

It is for this Reafon that we are fo often deceived in the Judgment we form of all great Diftances, and that we fee the Sun, Moon and Stars, as if they were involved in the Clouds, tho' it is certain they are vaftly beyond them. And being deceived as to their Diftance, we muft alfo be deccived with refpect to their Magnitude. Thus the Moon feems greater than the

Chap. V. Of the Motions of the Eye. rog greateft Star, tho' every body knows fle is vaftly lefs. Thus the Sun and Moon appear not above a Foot or two in Diameter, if we truft the Teftimony of our Eyes, as did Epicurus and Lucretius, who therefore imagined them no bigger than what they appeared. Thus alfo the Suin and Moon appear greater when near the Horizon, than at a greater Height ; becaufe, when nigh the Horizon, they are judged at a greater Diftance.
§ 19 . There is yet another Advantage, full as confiderable as any of the former, that is thought to arife from the uniform Motion of our Eyes, and that is, the fingle Appearance of Objects feen with both Eyes.

This indeed at firft View does appear very probable; for if, in looking to any Object, you prefs one of your Eyes afide with your Finger, and alter its Direction, every Thing will be feen double, which is a common Experiment wherewith Children amufe themfelves, being delighted with the uncommon Appearance of Objects.

The fame thing does alfo happen, when either of the Eyes is, from a Spafm or Paralyfis of any of its Mufcles, or from any other Caufe, reftrained from following the Motions of the other. Thus Willis (in his Anima Brutorum, cap. 15.) tells us of a young Man_{2}
iro Of the Motions of the Eye. Book II.
Man, long ill of the Palfy, who at laft came to fee all Things double, from a Spafm in the adducent Mufcle of his left Eye, whereby its $A x i$ was turned inwards, fo that it could not be directed to the fame Object with the other.

Platerus likewife (in the firf Book of his Obfervations, p. I32.) gives us the Hiftory of a Boy, who, after having received a Stroke on his Head, became paralytic in one of his Sides, and had his Mouth diftorted, to whom every thing he looked at appeared double: And tho he does not attempt to account for this Depravation of Sight, yet it is eafy to fee that it could proceed from nothing but a Palfy or Spafm of one of the Mufcles of one of his Eyes, by which it was rendered incapable of following the Motion of the other.

Langius alfo has a very remarkable Cafe to this purpofe, which being a little uncommon, we muft not omit. He tells us (in the 7 th Epiftle of his firft Book) That, in a Wound of the Eye, it happened, thro' Neglect, to unite and adhere to the under Eye-lid; fo that, after the Cure, that Eye was tied down, and rendered incapable of following the Motions of the other: This occafioned every thing to appear double, till the Eye, by its frequent Motions, had at laft ftretched the Eye-lid, to which it was adherent,

Chap. V. Of the Motions of the Eye. IIt
adherent, and thereby recovered its former Liberty of moving uniformly with the other.

Multitudes of Cafes of this Kind might be advanced; but I like not, without Neceflity, to multiply Examples of the fame Nature: Thefe are fufficient to prove, that when our Eyes are reftrained from moving uniformly, all Objects are feen double. Neither is it to be doubted, but, when the fame Pbanomenono occurs in drunk or maniac Perfons, it proceeds from the fame Caufe; the uniform Motion of our Eyes requiring an eafy and regular Motion of the Spirits, which frequently is wanting in fuch Cafes.

The fame Thing does alfo happen fometimes, foon before Death, when the Spirits have been worn out and exhaufted by long Sicknefs. We have a remarkable Example of this in the Acta Hofnienfia, publifhed by Bartholin. Olaus Borrichius there tells us, (Vol. 2. p. I98.) of a Woman that had been long ill of a Difeafe in her Breaft and Spleen, to whom, two Days before her Death, all Things appeared double. He indeed attributes this Phenomenon to a Change in the Figure of the Humours of the Eye, and thinks that they had acquired the Form of a Polygon, or multiplying Glafs; which is a very ftrange out of the way Notion, and altogether improbable. The true Caufe thereof

II2 Of the Motions of the Eye. Book. II.
thereof feems to have arifen from the languid irregular Motion of the animal Spirits, difqualifying them from executing the Commands of the Will, and directing both Eyes to the fame Object.
§ 20. For thefe, and fuch like Reafons, it is, that very many, both Phyficians and Philofophers, have been brought to believe, that, to fee Objects fingle, it is abfolutely neceffary that both Eyes be directed to the fame Object, and that this is one of the final Caufes of their uniform Motion ; and yet, when the Matter fhall be duly examined, I am confident, little Foundation will be found for any fuch Confequence. But I muft delay entering upon this Subject here, becaufe it will fall more naturally to be explained afterwards, when I come to treat of the Phenomena of Vifion.
§ 2 I . Having finifhed what I intended to fay concerning the final Caufes of the uniform Motion of our Eyes, I come now to inquire into the efficient Caufe of this Uniformity, or by what Neceffity it happens that both Eyes are always turned the fame Way, fo that none of us are able at pleafure to give them different Directions.

Aristotle, of old, and after him Galen, Avicenna, and moft of the Antients, do attribute this to the Union of the Optic Nerves, near the Sella offis Spbenoidis; but fince

Chap. V. Of the Motions of the Eye. II3
fince thefe Nerves give no Branches to the Mufcles, but are wholly beftowed upon the Retina, it follows, that they can contribute nothing towards the Motion of our Eyes, but are only for conveying to the Mind, or vifive Faculty, the Impreffions made upon their Fund by the Rays of Light. Hence it is, that in Blindnefs from Obftructions in thofe Nerves, the Eyes continue to move as formerly; becaufe their' Motion does not depend upon the optic Nerves, but upon their other Nerves and Mufcles. But, fuppofing that the optic Nerves did contribute to the Motion of our Eyes, yet their Conjunction could never occafion this uniform Motion; becaufe, as Diemerbroek obferves, (See his Anatom. lib. iii. cap. 16.) Anatomifts have found them disjoined in fome Subjects, who, while alive, moved their Eyes uniformly as other men.
\$ 22. It is therefore with good Reafon that our Moderns have rejected this Hypothefis as falfe and groundlefs; but neither have they themfelves fucceeded better, when they tell us, That this happens becaufe the Nerves beftowed upon the Mufcles of our Eyes, called Oculorum Motorii, are united at their Origin in the Brain. Every body knows that our Fingers are at Liberty to execute different Motions, and to be extended feparately, tho' not only Vol. I.

II4 Of the Motions of the Eye. Book II.
the Nerve, but alfo the Mufcle fubfervient to their Extenfion is but one: Whence therefore this Liberty fhould be denied our Eyes, whofe Mufcles are diftinct, I fee not. But this is not all; for there are many Parts of the Body, which, tho' they have Nerves of different Origins, yet they neceffarily move together. Thus the Eyes cannot be turned up nor down, but the Eye-lids follow their Motion, and keep at the fame Diftance from the Pupil, tho' at the fame time the Eye-lids can be moved without any Motion in our Eyes. Did this uniform Motion depend upon any Union or Conjunction of the Oculorum Motorii, or of any of our other Nerves, none would fquint, but fuch as had them disjoined; and it would be in vain to ufe any Precaution againft Children's taking up fuch a Habit, or to endeavour to correct it.
§23. The true Caufe of this Uniformity in the Motions of our Eyes to me feems wholly to depend on Cuftom and Habit: For it is not to be doubted but thefe Motions are voluntary, and depending upon our Mind, which, being a wife Agent, wills them to move uniformly, not from any intrinifical Neceffity in the Thing itfelf, or for want of Power to move them differently; but becaufe fuch Motions are moft profitable and ufeful to us. So that our Opinion is, that the uniform Motion of our Eyes is not at firft neceffary,

Chap. V. Of the Motions of the Eye.
neceflary, but that the Mind has impofed upon itfelf that Law, founded upon the Utility and Advantage that arifes from this Sort of Motion; which Motion does in Time become fo neceffary, that none of us are now able to move one Eye towards any Object, but the other is likewife turned the fame Way. And as for other Creatures who move their Eyes differently, fuch as the Chameleon, which has this Faculty in an eminent Manner, fo that the one Eye is moved, whilft the other remains immoveable; the one is turned forwards, at the fame time the other looks behind; and the one looks up to the Sky, when the other is fixed on the Ground. I fay, as for other Creatures that move their Eyes differently, fuch as the Hare, Chameleon, $\delta^{\circ} c$. it is evident, fince the Organs fubfervient to thofe Motions are the fame as in Man, that it is the Utility and Advantage they receive from thefe particular, Motions, which determines that Principle, which governs and rules all their Motions, to actuate the Organs in fuch a Manner as thofe Motions, which they find moit profitable and neceflary for them, may follow.

Dr. Goddart (in the Pbilofopbical Tranfactions) has obferved, that the Eyes of the Chameleon refemble a Lens or convex Glafs, fet in a verfatile globular Socket, of which

II6 Of the Motions of the Eyc. Boo II.
our Parifian Academifts have taken no Notice. But, be this as it will, they found that they were moved by true Mufcles, which, as in other Creatures, are inferted under the Conjunctiva; fo that it feems Panarolus was miftaken, when, as Bartholin informs us, (Hij. Anat. Rar. Cent. 2. Hift. 62.) he fays, that their Eyes want Mufcles, and that they are moved by the Corrugation of a Membrane, which is contracted by means of circular Fibres. What might have led him into this Miftake, may be gueffed at from the Obfervations of the fame Academifts, who tell us, that the Eyes, which are very large, jut out full Half of their Ball, and are covered with one fingle Eye-lid, made like a Cap pierced through the Middle, with a Hole not exceeding one Line in Breadth. This Eye-lid was found faftened to the Fore-part of the Eye, by means of an orbicular Mufcle that was fpread over the whole Tumica conjunctiva, to which, as well as to the Eye-lid, it was fo adherent, that it ferved to give the fame Motion to the Lid as to the Eye, tho' its particular Action was to contract the little round Hole of the Lid, which clofes by enlarging itfelf crofs-ways, even to the making one fingle Siit, which very exactly unites the upper Part with the lower. Seeing then that the

Chap. V. Of the Motions of the Eye.
Eye cannot be moved, without communicating the fame Motion to the Eye-lid, which muft therefore appear corrugated, it is probable, that Panarolus, for want of due Scrutiny after the Mufcles, might have imagined that the Motions of the Eye proceeded from the Corrugation of this Membrane, which is indeed contracted by means of the circular Fibres of the orbicular Mufcle. But, fuppofing Panarolus's Obfervation to have been juft, it is all one with refpect to the prefent Cafe ; for the diffimilar Motion of the Eyes arifing from the diffimilar Contraction of thofe circular Fibres, can have no Foundation, but in the Utility and Advantage that arifes from fuch Motions, which might as well have been executed by Mufcles. Nor can any good Reafon be affigned, why the Mind, which prefides over all the animal (if not alfo the vital and natural) Motions, fhould not be at Liberty to contract this or that Mufcle independently of others, as well as to contract this or that Fibre independently of others, efpecially when we find it frequently does fo in other Creatures, fuch as Fifhes, Birds: And, amongft Quadrupeds, the Hare, Coney, doc.

And as the Hare, Coney, Chameleon, for have a Power of moving their Eyes differently, fo neither is their any Room to doubt, but that
that at firft we ourfelves are alfo poffeffed of the like Power; as is evident from an Obfervation made on Children, who, we fee, for fome Time after Birth, can look different Ways with their Eyes; which Power they retain, till, by difcovering the Advantage of directing them the fame Way, they come to move them always uniformly. This uniform Motion, by Ufe and Habit, at laft becomes fo neceffary, that the Eyes cannot be moved differently; long Cuftom rendering many Actions neceffary, which were not fo effentially, nor from the Beginning.

I have already given an Example of this in the Motions of the upper Eye-lid, which always follows the Motions of the Eye, and keeps at the fame Diftance from the Pupil, whether the Eye be turned up or down. The fame Thing may alfo happen the Fingers; for, if one is not accuftomed to move any of them but in Conjunction with the reft, it will not be in his Power to move them feparately. Hence it is that moft People cannot bend their Ring-finger towards the Palm of their Hand, but the little one fhall follow its Motion. If any Body defires more Examples of this kind, let him try to elevate one of his Eye-brows, while the other is depreffed; let him try to dilate one of his Noftrils, or one Side of his Thorax, while

Chap. V. Of the Motions of the Eyc. 119
the other is contracted; or, if he can, let him contract the Mufcles on one Side of his Belly, while thofe on the other Side continue relaxed. I remember a Time when it was very difficult for me to fhut any one of my Eyes, while the other was open, which now is very eafy for me, becaufe I have accuftomed myfelf thereto ; and this frequently happens, even in the Eyes themfelves: For, if we accuftom ourfelves to direct them different Ways, as Boys do often in imitating thofe that fquint, we fhall in time be able to fquint without Difficulty, efpecially if young. This is further confirmed from the diffimilar Motions of the Eyes that are fo frequently obferved in blind People, and particularly by that Hiftory, taken notice of by Plempius, of a Girl, who lofing her Sight, and having therefore no longer any Advantage from the uniform Motions of her Eyes, came at laft to move them differently. Hence it is that Children, the younger they are, are the more apt to become gogle-ey'd; becaufe, when young, they have not fo much accuftomed themfelves to look the farne Way with both Eyes, as to render that uniform Motion neceffary; and therefore do frequently become gogle-ey'd, by having many pleafant Objects prefented to them at the fame time, which invites them to turn one Eye to one Object,

Object, and the other Eye to another : And thus they contract a Habit of moving their Eyes differently, which is apt to continue all their Life-time, if not timely corrected. Willis has obferved this (in his Anima Brutorum, cap. 15.) in thefe Words. 2 Luare infantes, quando ipforum oculis multe res fimul objiciuntur, frabifmum facile contrabunt.

C H A P. VI.

Of the Fabric and Structure of the Eye.

Sect. I. THAT we may the better un= derftand the curious Fabric and beautiful Mechanifin of this noble Organ, I thall firft give a general Idea of its Sructure, and then fhall confider more particularly each Part by itfelf; and at the fame time fhall make fome Remarks upon its different Make in different Animals.
§2. I have already obferved, that the Globe or Body of the Eye is compofed of Membranes or Tunicles, Humours and Veffels.

The proper Tunicles and Coats of the Eye are nothing but fo many Productions or Expanfions
panfions of the different Substances of the optic Nerve. The optic Nerves, like all the other Nerves of the Body, have three diftinct Substances, whereof the two firft are membranous Coats or Coverings, the one coming from the Durra, and the other from the Bia Mater; and the third Substance is a Continuation of the Medulla Cerebri itfelf. Thee three different Subftances, at the Bottom of the Eye, where thole Nerves enter the Globe, are expanded out into a fpherical Pigre, and form its Tunicles, which therefore are alfo three in number.
$\$ 3$. The firm arifes from the external Coat which the optic Nerve has from the Dur Mater, and expands itself into almoft an exact Sphere or Globe. It covers the whole Bulb of the Eye externally, and therefore is the largeft of all its Coats; it is thick, opaque, and. hard like Leather behind, and all round, till it comes to where the White of the Eye terminates, and is therefore called Tunica Dur feu Sclerotica; but its Fore-part beginning where the White of the Eye terminates, is thinner and perfectly tranfparent, and is called Tunica Cornea, becaufe it tranfmits the Rays of Light like the Horn of a Lantern.

Tho' this transparent Part of the outward Tunicle of the Eye has a diftinet Name from its opaque Part, the firm being called Cornea, Vol. I.

Q
and
and the fecond Sclerotica, yet I fcruple not to confider them as one and the fame Tunicle, expanded from the external Coat of the optic Nerve about the whole Globe. Nor do the Arguments that have been brought by fome learned Anatomifts to prove them diftinct, appear fufficient to demonftrate that they are really fo; as flall be noticed afterwards.

The tranfparent Part, called Cornea, which is what we fee furrounded by the White of the Eye, is always more protuberant and convex than the reft of the Eye, and therefore is elevated above the fpherical Surface of its opaque Part called Slcerotica. But in different Animals this Protuberancy is not always the fame. In Man, and the greateft Past of Quadrupeds, the Cornea, according to MaitreJean, is a Part of a Sphere whofe Diameter is an eighth Part lefs than that of the Sclerotica; but Birds have their Cornea much more elevated, it being; according to the fame Author, a Part of a Sphere whofe Diameter is only about the Half of the Diameter of their Sclerotica. I find indeed that Maitre-Jean is greatly miftaken with regard to this Account he gives of the Convexity of the human Cornea, as fhall be fhown below from Dr. Petit's more accurate Obfervations. Yet this does not make the Cornea in all Animals of a fimilar Convexity; all Authors being agreed that Birds

Birds have this Coat much more elevated and convex than either Man or Quadrupeds. According as our Cornea is more or lefs protuberant and convex; that is, according as it is a Part of a leffer or greater Sphere, Objects appear greater or lefs, and more remote or nearer; for the Convexity of the Cornea has a fimilar Effect to that of a convex Lens, thro' which, if an Object be viewed at a lefs Diftance than the Focus, it appears bigger and more remote than it does to the naked Eye; fill the bigger and more remote, the more convex the Lens is thro' which it is feen: And as Objects are not feen diftinetly, but when their Diftance is fuited to the Convexity of the Eye, this Difference in the Convexity of the Cornea will alfo occafion the Sight to be fhorter or longer, according as it is more or lefs convex.
\$4. The fecond Coat of the Eye arifes from the fecond Tunicle of the optic Nerve, and is alfo expanded out into a fpherical Form, till it reaches the Cornea. It lies immediately within the Sclerotica, and lines its internal concave Surface, to which it adheres; but, at the Edge of the Cornea, where the Cornea joins the Sclerotica, this Tunicle feparates itfelf from this Membrane, and goes disectly inwards towards the Axis of the Eye. That Part of it which lines the Sclerotica, is called Chooroides;
but its Fore-part, extending from the Edge of the Cornea to the Axis of the Eye, is called Uvea; in the Middle of which is a round Hole called the Pupilla or Sight. This Coat is all over opaque, as well in its Fore-part called Uvea, as in its Back-part called Choroides; by which means the inward Eye is darkened, and no Rays can enter it but what pafs by the Pupil. As the Uvea is a plain Membrane cutting the Eye tranfverfely in that Circle where the Sclerotica joins the Cornea, there muft be a Space left betwixt the Corvea and this Membrane lying behind it. This Space is filled with the aqueous Humour, a Part of which alfo lies behind the Urea, and fills all the Space betwixt it and the cryftalline Humour.

The Outfide of the Uvea, where the different Colours appear, is called the Iris, from its Refemblance to the Rain-bow, both being compofed of different Ranges of Colours: From thefe Colours the Eye is frequently named, and is called Blue, Gray, Black, boc. according to the Colour that is moft predominant in the Iris.
\$5. The third and laft Membrane of the Eye is called Retina, becaufe, like a Net, it covereth the Bottom of the Cavity of the Eye. It is nothing but a fine Expanfion of the medulary Part of the optic Nerve.

Its convex or outward Side lines the Membrana Choroides, and its concave Side covers the Surface of the vitreous Humour.
This Tunicle ends. where the Choroides, in going inward towards the Axis of the Eye, forms the Uvea. It is upon it that the Impreffions of Objects are made; and therefore it is juftly reckoned the immediate Organ of Sight; tho' the learned Mariotte is of another Opinion, and contends, that it is the Tunica Choroides which receives thefe Impreffions. His Arguments fhall be noticed afterwards in their proper Place.
§6. The Humours of the Eye fall next to be confidered; they are three in number, the Aqueous, the Cryjalline, and the Vitreous. All of them are tranfparent, that none of the Light may be intercepted, but that all of it may be tranfmitted for painting the Images of Objects upon the Retina with fufficient Strength and Brightnefs. They are alfo all clear like Water, that the Images of Objects may be feen in their own proper Colours ; for, were they tinged with any Colour, the Objects would alfo appear tinged with that Colour: For tho' Objects are feen very diftinctly when this Tincture does not render the Humours opaque, yet they muft appear in the fame Manner as to an Eye that is perfectly found, when it looks at them 'thro' a Glafs tinged with the like

Colour.

Colour. Thus in Jaundices the Eye is frequently fo much tinged with the yellow Colour of the obftructed Bile, that all Objects appear tinged with the fame yellow Colour.
§ 7. But it is to be obferved, that we are neyer fenfible of this Change of Colour, unlefs the Tincture be confiderable, and that it happen on a fudden. It muft be confiderable, that the Difference of Colour may be fenfible to us; and it muft happen on a fudden, that our Memory may retain the Remembrance of the Colours wherewith Objects appeared coloured, in order to make a Comparifon, when, after that, we again look on the fame Ob jucts.

There is nothing to which our Eyes do more fpeedily accuftom themfelves, than to the Change of Colours. It is eafy for every body to experience this, by looking thro' a Glafs tinged with Green, or any other Colour, and at the fame time hiding the Objects which might be feen without the Interpofition of the Glafs; for, in a very little Time, it cannot be perceived that the Objects are tinged with the Colour of the Glafs ; and we will be yet lefs fenfible of the tinging of Objects, if our Eyes are kept a confiderable time fhut before the Experiment is made.

Hence it follows, that none of us can be abfolutely certain, that any Object does now
appear to us of the fame ptecife Colour of which it appeared a Month or a Year ago. And this is fill the more evident, if we confider that Objects appear of different Colours according as they are illuminated with different Lights; of which neverthelefs we are commonly altogether infenfible.

Thus the greateft Part of Objects, in Candlelight, are always tinged with a yellow Red, tho' we are not fenfible thereof; becaufe all the Objects in view are changed in the fame Proportion. But if, in the Day-time, you place Candles in a darkened Chamber, that every thing therein may be well illuminated, and then retire to another Place illuminated with the Sun's Light, the Objeets illuminated with Candle-light, when viewed thro' the Door of the Room, will appear tinged with a yellow Red, when compared with thofe that are feen at the fame time illuftrated with Day-light. But this cannot be obferved, when one is in the Chamber in which the Candles are placed; and therefore it is no Wonder we are not fenfible of the Changes which may happen in our Senfation of Colours, either from the various Difpofitions of our Retine and optic Nerves, or from the Tincture with which the Humours of our Eyes may be infenfibly tinged.
§8. And, if we are not fenfible of the Change of Colours, we can never be certain
that
that the Colours of Objects are not changed; that is, we can never be certain that an Object does now appear to us of the fame precife Colour of which it appeared lafe Day, or laft Week: Neither can our being imfenfible of any Change ever prove to us that the Colour is the fame. So that it is evident, not only that different Perfons may have different Senfations of Colours, proceeding from the different Difpofitions of their optic Nerves and Retina, or from the different Tinctures wherewith their Eyes are tinged, but alfo that the fame Perfon may, from the fame Caufes, fee the fame Object differently coloured, at different times, without being fenfible of it.
§9. But this is not all ; for Experiments are not wanting, whereby it appears, that the fame Object is feen of different Colours, according as it is viewed with the right or left Eye.

When thefe Colours are very different, it is eafy to perceive the Difference, by fhutting the Eyes alternately. Thus, after one has for fome time viewed a very luminous Body thro, a Telefcope, it is eafy to obferve that Objects appear a great deal darker to that Eye than to the other that was kept fhut. It is eafy to make this Experiment in the Twilight, by looking alternately with both Eyes to a white Wall or Sheet of white Paper after one has viewed the Moon with a Telefcope. The Reafon

Reafon of this Phenomenon can be nothing but the Contraction of the Pupil occafioned by the great Light; for the Brightnefs of the Object makes it fhut up as much as poffible: But the Pupil of the thut Eye will be much larger, becaufe it contracts only by Sympathy, and therefore it muft allow a greater Number of Rays to enter, which will make the Object appear whiter to this Eye than to the other: And befides this, we might alfo add, that the Retind of that Eye to which the Telefcope was applied, having been ftrongly agitated by the great Light, cannot prefently be fufficiently agitated by that of an Object moderately illuminated; and this may be another Reafon why the Object appears more white and luminous to the Eye that was fhut, than to the other that viewed the Moon thro' the Telefcope. But it is carefully to be obferved, that, if the white Wall or Paper that one looks at, after viewing the luminous Body with the Telefcope, be ftrongly illuminated, as with Day-light, the Experiment will not fucceed; for the great Light of the Object will touch the Retine of both Eyes fo fenfibly, that we cannot diftinguifh any Difference in the Impreffions, or in the Senfations arifing therefrom. Thus we fee, that the Difference of Colours which appears in Objects, according as t ey are *iewed with different Eyes, is eafily difcovered,

Vol. I.
R
by
by fhutting the Eyes alternately, when this Difference is confiderable.

But it is more difficult to know if the fame Object is feen of different Colours with both Eyes, when their Difference is fmall : Yet the learned Monf. De la Hire has given us a Method whereby the leaft Difference may be eafily known. His Method is as follows.

Take two Cards, and in each of them nake a fmall round Hole with a Pin, whofe Diameter does not exceed the third or fourth Part of a Line; then apply them to your Eyes, and thro' the Holes look at a Sheet of white Paper that is all over equally illuminated: Each Eye fhall fee a Circle of Paper thro' the Holes, and thofe Circles will coincide and appear one, if the Rays that come from the fame Point of the Object, after paffing the Holes of the Cards, are, by the Humours of the Eyes, fo refracted, as to meet in the Bottom of both Eyes in analogous Points. But, if the Pofition of the Cards be changed, you fhall fee two diftinct Circles of Paper feparated from each other; and therefore, by feparating the Cards, or bringing them nearer together, it is eafy to make the two Circles of Paper which are feen thro' the Holes touch on another ; and confequently it will be eafy to make a Comparion betwist
twixt their Colours. If both Eyes are perfectly fimilar, the Colours of thefe Circles will alfo appear fimilar; but if the Humours of the Eyes are unequally tinged, or if the Retine are not of the fame Difpofition, and equally fenfible of the Impreffion of Objects, thefe Circles will ever appear of different Colours.
§ io. By this Experiment, De la Hire has obferved, that thofe who fee Objects more ruddy with one Eye than the other, efteem that Eye the beft for ordinary Ufe; and therefore it is probable, that that Recnefs is owing to the Delicacy and greater Mobility of the Retina of that Eye, which being more ftrongly agitated by the Rays of Light than the other, makes the fame Object appear to it more ruddy; for, according to Sir Isaac New ton's Theory, the leaft refrangible Rays do excite the largeft and ftrongeft Vibrations in the nervous Coat of the Eye, for making a Senfation of a deep Red; the mof refrangible, the fhorteft and weakeft, for making a Senfation of a deep Violet; and the feveral intermediate Sorts of Rays excite Vibrations of feveral intermediate Bigneffes and Strength, to make Senfations of the feveral intermediate fimple Colours; and therefore it is reafonable to fuppofe, that the Retina of that Eye to which Objects appear more ruddy than to the other,
is more delicate and moveable; from which Mobility the Vibrations will be ftronger for caufing that ruddy Appearance, and the Eye itfelf will be more fenfible, and will therefore be efteemed the beft. But to return,
§ II. Thefe three Humours are different in Confiftency, as well as in Quantity. The moft fluid is called the Aqueous, becaufe it approaches the Nature of Water, as well in Confiftency as in Tranfparency.

This Humour lies partly before and partly behind the Uvea, and fills all that Space which is betwixt the Cornea and cryftalline Humour. With regard to its Quantity, the greateft Part of Authors have been greatly miftaken. The great Vesalius, by placing the Cryftalline in the Middle of the Eye, increafes the Quantity of this Humour greatly above what it really is, Diemerbroek tells us, it is equal to the third or fourth Part of the Vitreous; whereas he makes the Cryftalline only the fifth or fixth Part of the Vitreous, by which the Quantities of the aqueous, the cryftalline and vitreous Humours, will be to one another, at a Medium, in the Proportions of $5 \frac{1}{2}, 3 \frac{1}{2}$, and $19 \frac{1}{4}$; which, in Integers, is 22 , I4, and 77 . The famous Bartholin fays, that the aqueous Humour is equal to one half, and the Cryftalline to one fifth of the vitreous Humour, by which their Quan-
tities will be as the Numbers $2 \frac{1}{2}, \mathrm{I}$, and 5 . Dr. Briggs makes them to one another, as the Numbers I, 2, and 24. But the learned Dr. Petit, of the Royal Academy of Sciences, who, on occafion of the Difpute concerning the Nature of Cataracts, made the Eyes his particular Study, and whofe Experiments and Obfervations were made with fo much Care and Exactnefs, and fo often repeated, that they may be depended on more than any thing, that is to be found in moft other Authors; this Author informs us, in the Mem. de ${ }^{\prime}$ ' Academ. An. 1728, that, in a Man of 50 Years of Age, the aqueous and cryftalline Humours were each four Grains, and the vitreous a hundred and four Grains; fo that the aqueous, cryftalline and vitreous Humours were to one another in this Eye, as the Numbers I, I, and 26. In the Eye of another Man of 22 Years, the Aqueous and Cryftalline were alfo four Grains each, but the Vitreous was only 95 Grains; fo that their Weights, in this Man's Eye, were to on another, nearly in the Proportion of I, I, and 24. And therefore the Weight of thefe Humours in the human Eye may be reckoned, at a Medium, to be to one another nearly as I, I, and 25. In other Creatures this Proportion varies. In a Cow, the fame Author obferved the aqueous Hunnour to be 38 Grains, the Cryftalline 52, and
and the Vitreous 360 ; and therefore they are to each other in the Proportion of $1, \frac{1}{1} \frac{7}{2}$, and $9, \frac{9}{19}$. In another Cow, whofe Eyes were a little withered, their Weight was 34,54 , and 347 Grains, which are to one another nearly, as in the former Cafe, regard being had to the withering of the Eye, in which the aqueous Humour always lofes moft by Evaporation.
\$ I2. The fecond Humour of the Eye is called the Cryfalline, becaufe it refembles the pureft Cryftal in Tranfparency. It is not the leaft of all the Humours, as has been generally taught, the Aqueous and it being of equal Weights, as has been already obferved: But its Subftance is by much the moft firm and folid of any of them. It is of a lenticular Figure, being convex upon both Sides; but its Fore-part, which looks to the Pupil, is not fo convex as its other Side next the glaffy Humour. It is covered all over with a very fine tranfparent Coat or Capfula, which, from its Finenefs, is called Aranea.

This Humour is fituated exactly behind the Pupil, but not in the Middle of the Eye, where Vesalius places it, but a good deal nearer its fore than back Part. Its Axis coincides with the Axis of the Eye. The aqueous Humour fills up all the Diftance be-
twixt it and the Cornea, as the vitreous does that betwixt it and the Retina. We have faid, that this Humour is convex upon both Sides, and that its Back-part is the moft convex: Now, this Convexity of its pofterior Face, is all received into an equal Concavity in the Forepart of the glaffy Humour.
§ I 3. The third Humour of the Eye is the Vitroous, fo called, becaufe it refembles melted Glafs. It is the largeft of all the Humours; for it filleth all the Back-part of the Cavity of the Globe. It is much thicker than the aqueous, but thinner than the cryftalline Humour. Upon its back Part the Retina is fpread, which it holdeth from the cryftalline Humour at a Diftance requifite to receive the Impreffions of Objects diftinctly, and in the Focus of the Rays: The Middle of its Forepart has a Dimple or fmall Cavity in which the whole pofterior Face of the Cryftalline lies, as has been before obferved. This Humour, as well as the Cryftalline, has a very fine Coat which covers it all round : It is called Tumica vitrea, from its Office. This Tunicle, at the Edge of the Cryftalline, is devided into two Membranes, of which the one is continued over the whole anterior Part of the vitreous Humour, and covers that Dimple or Cavity in which the convex Backpart of the Cryftalline lies; the other paffes above
above the Cryftalline, and covers all its Forepart, by which means thefe two Humours are clofely attached together; as may eafily be obferved, after they are taken out of the Globe; for they adhere fo clofely, that they are nor to be feparated without fome Force.
§ I4. Befides the Tunicles and Humours of the Eye already defcribed, there is yet another Part, which, tho' very delicate and fmall, yet is of confiderable Ufe in feeing Objects diftinctly at different Diftances. It is called Ligamentum Ciliare, becaufe it is compofed of finall Filaments or Fibres, not unlike the Cilia or Eye-lafhes.

This Ligament, or rather mufcular Procefs, is made up of fhort white Fibres, which arife from the Infide of the Choroides all round its circular Edge, where it joins the Uvea; from which Orgin they run upon the Forepart of the glafly Humour, like Lines drawn from the Circumference to the Centre, and terminate all round at the Edge of the Cryftalline, being attached to the Membrane of the vitreous Humour at that Place, where it devides to cover the Cryftalline.

Thefe Fibres are at fome Diftance from one another. But the Intervals are filled up with a blackifh Sort of Mucus, which makes
makes the whole appear like a black Membrane.
§ 15 . This is a general Idea of the Structure of the Eye, which we thought neceflary to premife, for the fake of thofe that are but little acquainted with this Organ. For the better undertanding of which, fee the Section of the Eye at Fig. 4. Plate i. where,

NOO reprefents the optic Nerve.
The outmoft Line OSCSO is the external Coat of the Eye, whofe Back-part SOOS is the Sclerotica, and whofe Forepart SCS is the tranfparent Cornea.

The Line OSPSO lying immediately within the former, is the fecond Coat of the Eye. Its Back-part SOOS is the Choroides, and its Fore-part SPS is the Uvea, in which the Hole at P is the Pupil.

The prick'd Line SOOS is the Retina.
The Cavity SCSRRS is the aqueous Hu mour.

The lenticular Figure RR is the Cryftalline.

All the Space SOOSRRS, lying behind the Cryftalline, is the vitreous Humour.

SR, SR, is the Ligamentum Ciliare.
Voz.I.
S
CHAF。

138 Of the Sclerotiea and Cornea. Book II.

C HA P. VII.

Of the Sclerotica and Cornea.

HAVING, in the lat Chapter, given a fort Account, of the constituent Parts of the Eye, I now proceed to confider thole Parts more particularly: And, fir ft Of the Sclerotica and Cornea.

- § 1. The Sclerotica and Cornea, as we have before observed, are one and the fame Coat, being nothing but a Production or Expanfrom of the outward Tunicle of the optic Nerve; yet forme Authors are greatly offended with this fuppofed Continuity, and that because, Fir ft, If they were a Continuation, of the Tunicle, which the Nerve has from the Dur Mater, then, fay they, they would be endowed with a Senfe much more exquifite than what they are poffeffed of, and the Puncture made in the Sclerotica in couching the Cataract would be unfupportable; whereas it produces only a very flight Pain, tho' this Membrane is not only pretty hard, but alfo of a confiderable Thickness.

Chap. VII. Of the Sclerotica and Cornea. I39
$\oint 2$. That this Membrane is not very fenfible, is moft certain; and it is probable, that the couching of the Cataract would fcarce give any Pain at all, were not the Membranes that compofe the White of the Eye pricked at the fame time, which Menibranes are indeed endowed with a very exquifite Senfe; but being thin, they are quickly pierced with the Needle, and therefore the Pain, becaufe foon over, becomes fupportable. But from this it does not follow, that the Sclerotis and Cornea are not one continued Subftance with the outward Membrane of the optic Nerve ; for, in feveral Parts of the Body, we obferve the fame continued Subftance endowed with different Degrees of Senfibility ; and particularly the Nails have no Senfe at all, tho' according to the Obfervation of fome Anatomifts, and thofe none of the meaneft Rank, they are of one continued Subfance with the Nerves themfelves from which they arife.
8.3. A fecond Argument againft the Continuity of the outward Coat of the Nerve with the Subftance of the Sclerotis and Cormen, is, That, were it fo, then, in Birds and Fifhes that have the Sclerotis converted into a hard bonny Subftance, the external Membrane of the Neive, as well as the Cornca, would alfo be found bomy or cartilaginous; which

I40 Of the Sclerotica and Comea. Book II.
which not being fact, they conclude it a grofs Error thus to defcribe thofe Tunicles as an Expanfion of the outward Coat of the Nerve.
\$4. But from this Way of reafoning they night as well find fault with defribing the Bafis of the Aorta next the Heait as one continued Subftance with all the Arteries of the Body, becaufe in feveral Animals it is found bonny, tho' at the fame time all the reft of its Subftance, as well as that of the other Arteries arifing therefrom, is membranous and yielding.

Every body allows, that the Tendons are of one continued Subfance with their Mufcles; which could not be true, were this kind of reafoning conclufive ; for the Tendons of the Thighs and Legs of Birds grow bonny, as they grow old; whereas their refpective Mufcles always continue flefhy, foft and flexible. We have therefore, after the Manner of many Anatomifts, taken the Liberty to defcribe this and the other Coats of the Eye as Continuations or Expanfions of the different Subftances of the optic Nerve, partly becaufe fuch a Suppofition contributes to the clearer defcribing thefe Coats, and partly becaufe they are fo clofely united with thefe Subftances, that they cannot be feparated without cutting them; which is all we fhall offer as an Apo-

Chap. VII. Of the Sclerotica and Cornea. 14 I
logy, leaving every body at Liberty to think otherwife, if they incline; it being a matter of no great Confequence, with regard to what I am to fay, whatever Opinion they embrace.
55. Now, this external Coat of the Eye is compofed of Fibres, which do not run the fame Way, but crofs one another in a Multitude of Places, and almoft every where: Hence it is that it is very difficult to tear this Membrane ftreight, the different Directions of its Fibres in different Places making it tear different Ways, fo as to appear ragged.
§ 6. It is, like all the other Membranes of the Body that are of any confiderable Thicknefs, compofed of different Plates or Pellicles applied over each other: Thefe Plates are very difficultly feparated in the Sclerotis, becaufe of the many Fibres and Veffels which running crois betwixtits two Sides tie them together; but in the Cornea they may be feparated with much more Eafe; for with the Point of a Lancet you can eafily raife three, four or five fuch Pellicles, each of which may again be fuppofed to be compofed of many others; for Leeumenhoek, in the Cornea of a Calf, feparates no lefs than a hundred of them.
\$7. Some Anatomifts will not allow this Membrane to be compofed of different Pelli-

142 Of the Sclerotica and Cornea. Book II.

cles, and contend that thefe anatomical Separations are rather Divifions of what was naturally united and continuous. But, befides what appears in Diffection, we have a demonftrative Proof of this from what happens in Puftules and Abfceffes of the Cornea; for thefe little Tumours do not only appear broad and flat, but frequently the Matter contained in them makes its Way betwixt the Pellicles, and falls down to the lower Edge of the Cornea, leaving behind it a Spot or Mark, which, if oppofite to the Pupil, does very much darken the Sight, if not properly treated. Now, were the Corriea of one continued homogeneal Subftance, the Humour finding an equal Refiftance on all hands, would always form a round convex Tumour: But fince thefe Tumours are flat and broad, and fince the Matter frequently makes its Way in the Manner juft now obferved, it neceffarily follows, that it lies betwist its Pellicles which, by feparating from one another where the Refiftance is leaft, give the Tumor a broad flat Form, and allow it to pafs betwixt them to the under Edge of the Cornea; which could not happen, were it of one continued homogeneal Subftance; and therefore it muft be allowed to be compofed of many Pellicles or Plates applied one upon another.

Chap. VII. Of the Sclerotica and Cornea. 143
§8. In Man and Quadrupeds, both the Sclerotica and Cornea, tho' of a denfe compact Subftance, are neverthelefs foft, flexible and yielding, like other Membranes. But, in Birds and Finhes, the Sclerotica is altogether inflexible, being generally harder than a Cartilage, and in fome quite bonny; whence it feems manifeft, that in thefe Creatures the Change of the Conformation of the Eye, by which it is adapted to the different Diftances of Objects, does not arife from any Change in the Figure of the Eye itfelf, proceeding from the Action of its Mufcles, as many have imagined; the Hardnefs and Inflexibility of the Sclerotica being repugnant to any fuch Change of Figure, from whatever Caufe it may be fuppofed to arife. This Change of Conformation in the Eyes of thefe Creatures muft therefore proceed from fome other Caufe, fuch as the Contraction of the Ligamentum Ciliare; and if this Ligament can have this Effect in thofe Creatures, I fee not why the fame Power fhould be denied to it in Man and Quadrupeds, or why we fhould feek for the Caufe of this Change any where elfe.

In Fifhes, Infects, and all fuch Animals as want Eye-lids to cover and defend their Eyes, the Cornea alfo is of a firm hard Subftance, as has been obferved by Fabricius ab Aquapendente,

144 Of the Sclerotica and Cornea. Book II.

pendente, which was neceffary, that it might not be hurt by fuch Particles as their Eyes are expofed to, and from which the Eyes of other Animals are fo well guarded and defended by their Eye-lids. This is particularly to be obferved in cruftaceous Animals, fuch as the Locufta, Gammarus, Pagarus, Cañcer, 8xc. in whom Eye-lids, in place of being ufeful or neceffary, would have been hurtful, and an Impediment to their Sight; for, as hath been before obferved, had Nature extended their hard cruftaceous Skins over their Eyes, in form of Eye-lids, they could not have been moved to and again upon their Eyes; and, were it poffible they could be moved, they would neceffarily hurt the tender Eye, in place of defending it: Therefore, provident Nature has wifely contrived another Method by which their Eyes might be fecured from external Injuries, and that is, the Hardnefs of the Cornea, which, in thefe Animals, exactly refembles the Horn of a Lantern; and therefore is not to be hurt by fuch Particles as their Eyes are commonly expofed to. In other Animals, that want Eye-lids, the Cornea is alfo commonly firm and hard, tho not fo firm as in cruftaceous Animals. But, in all Animals that are provided with Eye-lids for guarding and defending their Eyes, fuch as

Chap. VII. Of the Sclerotica and Cornea. 145

Man, Quadrupeds and Fowls, their Cornea is more foft and delicate.
9. The accurate Mr. Winslow having obferved that the Cornea, after Death, is commonly covered with a kind of Membrane or fine glairy Coat, which fometimes tarnifhes the Eye to fuch a Degree, that the Pupil can fcarcely be diftinguifhed; and obferving, that this Membrane is to be found as well in thofe who die with their Eyes open, as fhut, was made to fufpect, that it was formed of a Lymph that naturally fweated thro thofe Pores of the Cornea, which Steno had made mention of in his Treatife on the Glands and Mufcles; and, after many fruitlefs Attempts to difcover thefe Pores, he was at laft fo lucky as to fucceed: For, by preffing the Eye in a certain Manner, which he lighted on by accident, he could diftinctly fee this Liquor fweat thro' thefe Pores, and form little Drops upon the Cornea, which gradually diffufed themfelves over its whole Surface. (See Mem. de l'Academ. amn. 1721.)

This glairy Coat is very tender and delicate, in fo much that it breaks into many Pieces when it is touched, and is eafily removed altogethrer by wiping the Cornea. It commonly begins to be formed fome little time before Death; whence the Eyes lofe their Brilliancy, and becoming dull and lifelefs, put on a cerVol I.

146 Of the Sclerotica and Cornea. Book II.
tain Appearance which has always been looked on as a certain Sign of a fpeedy Diffolution. It is not therefore without fome Reafon, notwithftanding what Plempius fays to the contrary, that Pliny tells us, that while the Pupil reflects Images, Death is not to be feared. (Vid. lib. xxviii. cap. 6.)
§ 10. It has been noticed before, that Maitre-Jfan makes the human Cornea a Part of a Sphere whofe Diameter is only one eight Part lefs than that of the Sclerotica. But in this he is greatly miftaken, it being much more convex. The great Hugens, in his Dioptricks, prop. 3I. makes the Diameter of the Eye about an Inch of the Reinland Foot, which is much the fame as the old Roman Foot, and the Diameter of the outward Cornea about three fifth Parts of an Inch. This is prettyriear the Truth; for Dr. Petit has fhewed that the Axis of the Eye meafures II $\frac{\pi}{3}$ Lines Paris Meafure; whereas the Diameter of the Sphere of which the Cornea is a Part, is commonly only $7,7 \frac{1}{4}$ or $7 \frac{1}{2}$ Lines.

The Chord of the Cornea,, or, which is the fame thing, the Diameter of the Iris, including the Thicknefs of the Cornea, commonly meafures from 5 to $5 \frac{1}{4}$ or $5 \frac{1}{2}$ Lines. (l'Hifoire de l'Academ. Royal, amn. 1728.)

The Diftance betwixt the Centre of the Cornea and the cryftalline Lens, meafured on the

Chap. VII. Of the Sclerotica and Cornea. 147
Axis of the Eye, from the Outfide of the Cornen, is $I_{\frac{5}{1} 2}^{5}$, from which deducing $\frac{2}{12}$, which is the Thicknefs of the Cornea itfelf, there remains $I \frac{1}{4}$ for the Thickneis of both Chambers of the aqueous Humour.

The Thicknefs of the Fore-chamber of this Humour, or the Diftance betwixt the Centre of the Cornea and the Centre of the Pupil, he found to be 0.955 ; but the Thicknefs of the pofterior Chamber, or the Diftance betwixt the Centre of the Pupil and the Cryftalline, he found to be a good deal lefs, being only 0.32 ; which two being added together, give 1.275 for the Thicknefs of both Chambers, which is nearly $\mathrm{I} \frac{1}{4}$, as has been before obferved.
§ II. From this great Thinnefs of the pofterior Chamber of the aqueous Humour, it is obvious, that, in the Operation of the Cataract, the Needle can never pafs into this Chamber, without hurting the Iris, whofe Diftance from the Cryftalline being lefs than the Third of a Line, can never allow of that Motion of the Needle that is neceflary for depreffing the Cataract, without tearing that delicate Membrane.

I know that a great many Operators, and even Maitre-Jean himfelf, have imagined, that the Needle is introduced before the Cryftalline, betwixt it and the Iris; having been led, as I fuppofe, into that Miftake, from their feeing

r48 Of the Sclerotica and Cornea. Book II.

feeing the Needle thro' the Pupil. But the Opacity of the Cryftalline is not fo great, but that the Needle, which is always introduced behind it, may be feen thro' this Humour; for I take the Opacity of the Cryftalline to be in this refpect fomewhat analogous to oiled Pa per, thro' which, tho' an Object cannot be feen when placed at a Diftance behind it, yet it may be feen pretty diftinctly when made to touch it. And, to be yet further convinced that the Needle is introduced behind the Cryftalline, we need only compare the Place of the Puncture and the Direction of the Needle, with the Situation and Thicknefs of the cryftalline Lens.

From what hath been faid, it is eafy to fee, that the Cataract cannot be a Pellicle or Film fwimming in the aqueous Humour, as was generally believed, till towards the Beginning of this Century, that Brissaw, Maitre-Jean, Heister, ooc. fhewed it to be an Opacity of the Cryftalline: For, were it a Film in the aqueous Humour, it could not be couched by the Operation, as it is commonly performed, becaufe the Needle never enters the Place of that Humour. "We may from this alfo fee one good Reafon why fometimes this Operation does not fucceed fo well as might be expected; for, if the Operator miftakes the Situation of his Needle, and imagines that it is before the Cataract

Chap. VII. Of the Sclerotica and Cornea. 149

Cataract or opaque Cryftalline, he may lofe much Time and Pains in poking and fearching for the Cataract, before he can deprefs it; by which laborious Operation, the Eye muft fuffer confiderably, which is apt to render the Operation fruitlefs: And tho' the Operation fometimes fucceeds, even when the Operator miftakes the Situation of the Needle, yet it cannot be denied, that the opaque Body forming this Difeafe, will be the more eafily, quickly and effectually depreffed, that its Situation with refpect to the Needle, and the Anatomy of the Eye, are exactly known.
§ I2. This external Coat of the Eye, contrary to the Opinion of Laurentius, has Arteries, which arife from that Branch of the Carotid which accompanies the optic Nerve in going out of the Skull; and Veins, which difcharge themfelves into the Jugulars. - The moft confiderable of thefe Veffels enter it upon its Back-part near the optic Nerve, where they form different Ramifications, of which fome are extended thro' this whole Coat, and terminate betwixt its Pellicles; others pierce its. Pellicles obliquely, and enter the Globe itfelf, for to be diftributed to the Choroides, Uvea, Retina, and its other interna! Parts.

Befides thefe Veffels, there are inferted into this Membrane fome Branches of Nerves which

I50 Of the Sclerotica and Comea. Book II.
which come from the ophthalmic Branch of the fifth Pair. Thefe Branches having accompanied the optic Nerve, are diftributed partly to the Bottom of this Membrane, and are diffufed thro' all its Subftance. The reft do pierce it intirely in other Places, and are beftowed upon the Choroides, Ciliary Circle, Uvea, do.

C H A P. VIII.

Of the Choroides and Uvea.

SECT.I.THIS Coat lies immediately within the former, and, as has been faid before, is nothing but an Expanfion of that Membranous Covering which the optic Nerve receives from the Pia Mater: It is a great deal thinner than either the Sclerotica or Cornea; and, being very delicate and tender, is eafily torn affunder: Its Fore-part, called Uvea, is much thicker and ftronger than its Back-part, called Choroides; and this Thicknefs is fuppofed to arife from fome circular Fibres that are fpread upon its, outward Part for contracting the Pupil: Yet at its Edge, where it forms the Pupil, it is very thin and

Chap. VIII. Of the Choroides and Uvea. 1.5 I
and tender ; and therefore great Care ought to be taken in couching the Cataract, that it be not torn by the Needle, which, when ithappens, the Magnitude and Figure of the Pupil will be for ever changed.
\$ 2 . This Coat is quite opaque in all its Parts; by which means it allows no Light to pals but what erters by that circular Hole in its Fore-part, called the Pupil: And this Opacity is yet more increafed by that black Pigment, with which it is all over covered, and which makes this Membrane appear black, tho' it be really white, as every body may be affured of, by fcraping and wafhing off this Colour, which eafily feparates. But this Membrane is not over all equally covered with this Co lour: It is in greater Plenty in the Back-part of the Choroides, which touches the Sclerotis, and in the inner or pofterior Side of the Uvea next the cryftalline Humour, than in the concave Side of the Choroides, upon which the Retina is fpread, and in the Iris or anterior Side of the Uvea.
§.3. All Animals, as Fabricius ab Aquapendente obferves, have the convex or Backpart of the Choroides always covered with more or lefs of this black Pigment; but its concave Side, next the Retina, is of different Colours in different Animals. In Swine, and the greateft Part of Birds and Fifhes, as woH

152 Of the Choroides and Uvea. Book II.
as in Man, the Fore-fide of the Choroides is always black; but in many other Creatures, fuch as the Lion, Camel, Bear, Ox, Dear, Sheep; Dog, Cat, and many other Quadrupeds, and even in fome of the Bird kind, that are not endowed with a good Sight, fuch as the Owl, and other nocturnal Birds, this Tunicle is never black in its Fore-fide next the Retina, but of a fplended blue, green, yellow, pearl, or other bright Colour. And this I here take Notice of, becaufe fome of our fubfequent Reafonings, about the Manner of Vifion, and the Ufe of the feveral Parts of the Eye, will be foanded thereon.
§ 4. The Choroides is not at all attached to the Sclerotica, which it lines internally, but by the Veins, Arteries and Nerves, which piercing the Sclerotica, are beftowed upon it, except at its Edge, where, in going inwards, it forms the Uvea. This circular Edge of the Cboroides feems to be of a different Subftance from the reft of this Membrane, being much more hard, denfe and white, and therefore is by fome called the Ciliary Circle, becaufe the Ligamentum Ciliare arifes therefrom.
§ 5. Now, the Choroides, befides its membranous Fibres, has a great many others of a quite different Nature, which arifing from the Circumference of the Entry of the optic Nerve, go obliquely forwards to its Edge, where it

Chap. VIII. Of the Choroides and Uvea. 153
forms the Ciliary Circle; at which Place fome are reflected inwards towards the Edge of the Cryftalline, and form the mufcular Fibres of the Ligamentum Ciliare: Others run forwards upon the Infide of the Uver, and, like fo many Rays drawn from the Circumference towards the Centre, terminate in the Edge of the Pupil. Thefe Fibres, by their Contraction, open the Pupil, and enlarge its Hole, when the Light is weak, or when the Object is at a great Diftance, or obfcurely illuminated, that a greater Number of Rays may enter the Eye; as will afterwards appear.
§ 6. Befides thefe ftreight Fibres for open* ing the Pupil, there are others which embrace it circularly. Thefe are truly mufcular, and being fpread on the outward Side of the Uvea, like a Sphincter, by their Contraction, they leffen the Pupil, when Objects are too near or luminous, that the Sight may be rendered more diftinct, and efpecially that the Retina may not be offended by the dazzling Brightnefs of Objects.
That the Uvea is furniffed with fuch circular Fibres, is now generally agreed by Anatomifts, tho', I imagine, not fo much from their being able to demonftrate them, as from Reafon and Analogy: For as the Contraction of the Pupil, upon ftrong Light, is plainly vifible, that Contraction is jufty prefumed to Vod. I.

U
be

154 Of the Choroides and Uvea. Book II.
be owing to fuch mufcular Fibres; and therefore the famous Mr. Ruysch, following in this the reafonable Doctrine of molt other Anatomifts, has reprefented this Ring of mufcular Fibres in one or two of his Figures; But he tells us, at the fame time, Sculptor bic juffo diftentius reprefentavit; namz in objecto ipfo non ita luculenter vifuntur. (TheSaur. Anatom. II. p. 87.) And, in another Place, he ingenioully declares (ibid. p. I4.) Fateor bafce fibras circulares non tam luculenter confpici pofe, quin oculi mentis in fulbfidium fint vocandi.

This fame Author contends, that the Choroides confifts of two different Membranes, each of which hath a diftinct Net-work of Veffels, and therefore calls the external Coat Choroides, and the internal Ruy \int chiana. But we fhall not wafte Time in inquiring whether there be any fuch Thing as the Membrana Ruy $/$ chiana or not; it being of little Confequence whether it be thought a diffinct Membrane, or only a Part of the Choroides.
§ 7. Moft of the antient Anatomifts, fince the Days of Galen, have defrribed the Uvea as a convex Membrane. Vesalius is the only Author I know who has done Juftice to its Figure, by making it plain ; but in this he was not followed by any I know, till Monf. Petit, in the Memoirs of the Acade-
my of Sciences, Anno 1728, demonftrated it to be truly of that Figure.

What may have led fo many famous Authors into this Miftake, feems to be the Convexity which it really has in Cows, Sheep, and fome other Creatures they may have diffected, joined to the convex Appearance it makes in Man, when his Eyes are looked to. But in Man, it is always plain; and Monf. Petit has fhewed, that, tho' this Membrane be plain, it muft be feen convex, by Reafon of the Refractions which the vifual Rays fuffer in paffing thro' the Cornea and aqueous Humour; and, to confirm this by Experiment, he caufed make a little Machine, fimilar to the anterior Part of the Eye, and, according as this Machine was full of Water, or empty, one could fee that the fame plain Surface, which was in place of the Uvea, appeared either convex or plain; which is an experimental Proof, that it is the aqueous Humour that caufes this convex Appearance of the Uviea in the human Eye; and thofe that have any Knowledge in Optics, will eafily fee the Reafon of it.
§8. The learned Riolan (Anthropograph. lib. iv. cap. 4.) has obferved, that in a Cow's Eye boiled, the Uvea can be eafily feparated from the Choroides, by being drawn from it with the Point of a Scalpel; from which he concludes, and

I56 Of the Choroides and Uvea. Book II,
and that not without fome Appearance of Reafon, that the Uvea is a diftinct Membrane from the Choroides, and only contiguous to it. The fame Author alfo affirms, that the like Separation may be made in in the human Eye, tho' not fo eafily. But in this, I imagine, he is miftaken; for, with Plempius, and feveral others, this Separation could not be made to fucceed.
§ 9. This Coat has Nerves, Arteries and Veins from thofe of the Sclerotica, which, as we have before obferved, pierce it in a great many Places, and are diftributed thro' all this Membrane. Of thefe Arteries and Veins a great many Branches alfo pierce this Membrane itfelf, and are diftributed to the Retina, Ligamentum Ciliare, and the Membranes covering; the cryftalline and vitreons Humours. Thofe who defire a more particular Account of thefe Veffels, and the beautiful Plexufes formed by them in the Choroides and Uvea, may confult the famous Ruysch, whofe fubtile Injections have difcovered moft wonderful Ramifications and Net-works in thefe Parts.
§ Io. The Pupil or round Hole with which the Uvea is peirced, has no fixed Meafure, being greater or fmaller, according as lefs or more Light fhines upon the Eye.

This any one may try; for, when the Light is ftrong, or the vifual Object too luminous,

Chap. VIII. Of the Choroides and Uvea. 157

we contract the Pupil for intercepting a Part of the Light, which otherwife would dazzle and hurt our Eyes; but when our Eyes are in no Danger of being hurt by the Light, and efpecially if the Light is fo weak as to make but a faint obfcure Picture on the Retina, we enlarge this Aperture, that more Light may enter the Eye for making a fufficient Impreffion on this Membrane.
in. This Aperture alfo contracts at the near Approach of any fmall Object, when we endeavour to view it diftinctly.
§ I2. The ingenious Dr. Whytt, in his Efjay on the Vital Motions, p. 134. tells us, That Plempius was the firft who obferved this Motion; but in this I apprehend he is miftaken; for Plempius no where affumes the Honour of this Difcovery, and he did not write his Ophthalmographia, in which he takes Notice of this Motion, till the year 1632, long before which it had been obferved by others; and particularly by the learnedıScheiner, who, tho' he was not himfelf the firft Difcoverer of it, yet he has demonftrated this Motion by convincing Experiments, in his Fundamentum Opticum, lib. 1. part. 2. publifhed in the year r6ig.
§ 13. The Reafon of this Contraction is, becaufe, when the Object is nearer than the neareft Limits of diftinct Vifion, the Rays that come from the feveral Points of the Object

158 Of the Choroides and Uvea. Book II.
jeet will not be united in fo many correfponding Points in the Retina, but at fome Place behind it, whence the Picture on the Retina, and the Vifion thereby caufed, will be confufed and indiftinct; ftill the more confufed, the nearer the Object is to the Eye; but, by the Contraction of the Pupil, the little luminous Pencils, which have for their Apex a Point in the Object, and for their Bafis the Aperture of the Pupil, will, by reafon of their Acutenefs, proceeding from the Contraction of the Pupil, take up a fmaller Space on the Retina; ftill the fmaller, the more the Pupil is contracted; by which means the Confurion in the Picture will become lefs, and the Sight will be made more diftinct, tho' lefs clear. This therefore is a good Reafon for contracting the Pupil, when Objects are nearer than the neareft Limits of diftinct Vifion ; for they are thereby rendered more diftinct, and at that Diftance, they are fufficiently luminous to be clearly enough feen, tho' the Pupil be a little contracted.

But the Pupil may alfo contract in viewing Objects a little more remote than thefe neareft Limits; for, tho' the Eye can adapt itfelf to that Diftance, yet, if the Object is large and uncompounded, or if the Parts it confifts of, and to which the Eye is attentive, are not too fmall, there will be no Need of accommodating the Eye exactly to its Di-
ftance,

Chap. VIII. Of the Choroides and Uvea. 159
fance, a leffer and lefs laborious Contraction of the Ligamentum Ciliare may fuffice to fhow the Object with fufficient Diftinctnefs, efpecially when the Pupil is contracted at the fame time; and therefore the Pupil may have good Reafon to contract, even when Objects are within the Limits of diftinct Vifion, for rendering the Sight more diftinct, and at the fame time, for avoiding that painful and more laborious Contraction of the Ciliary Ligament, which would be neceffary to fee the Object with fufficient Diftinctnefs, and which, by being on the Strain, would be very fatiguing, when the Object is viewed for any time together.
§ 14. But if the Object is not fufficiently luminous, this Ligament will not be eafed of any Part of this Labour, in making the Object appear diftinct by the Contraction of the Pupil; for, in this Cafe, the Pupil will rather be enlarged for letting in more Light, that the Object may be feen with fufficient Brightnefs. And this is the Reafon why Objects at a Diftance, and beyond the furtheft Limits of diftinct Vifion, are feldom made more diftinct by the Contraction of the Pupil; for the Light being commonly weak in diftant Objects, the Pupil is fo far from contracting, that there is often a Neceffity that it be dilated, to take in more Light, that the Object

160 Of the Choroides and Uvea. Book II.
mayappear fufficiently bright and luminous; yet when the Object is very bright, the Pupil will contract, for rendering the Sight more diftinct, at whatever Diftance the Object be from the Eye; for then that Contraction anfwers two Purpofes; one to exclude an over-great Quantity of Light, which would be offenfive to the Eye, the other to leffen the Indiftinctnefs.
§ 15. In Children, this Aperture is ufually more dilated than in grown Perfons.

This may be eafily feen; for, in grown Perfons, the Diameter of the Pupil feldom appears equal to the Breadth of the Ring of theUvea on either Side of it; that is, is feldom equal to one third of the Breadth of the Cornea or Iris, and is often much lefs, efpecially in a good Light. But in Children, the Diameter of the Pupil fcarce ever appears fo little as one third of the Breadth of the Cornea, and often exceeds Half that Breadth.

Suppofing then the Diameter of a Child's Pupil, in its relaxed State, when the Light is weak, to be Half the Breadth of the Iris or $2 \frac{1}{2}$ Lines; and fuppofing the orbicular Fibres, in their contracted State, to become a third fhorter than when relaxed (which is the Degree of Contraction that is commonly allowed to Muícles), this Pupil, in a ftrong Light, will be contracted to one Line and

Chap. VIII. Of the Choroides and Uvea. $16 \$$
two thirds, which being a third of the Breadth of the Cornea, is nearly what it appears to be at a Medium, from fuch rude Obfervations as I have had occafion to make. In like Manner, fuppofing the Diameter of the Pupil of grown Perfons, in its relaxed State, to be one third of the Breadth of the Cornea or Iris, or: one Line and two thirds; in its contracted State, it will be one Line and one ninth Part; which alfo feems to be pretty near the Truth. But it is not eafy to determine this exactly, efpecially that the Magnitude of this Aperture is fo different, in different Perfons of the fame Age, and in the fame Degree of Light.
§16. In elderly Perfons, the Pupil is yet fmaller, than in Adults, being feldom greater than the Half of the Breadth of the Ring of the Uvea furrounding it, and confequently is only about one fifth of the Diameter of the Iris; that is, is only: about one Line in Diameter: And in fuch Perfons it has buit very little Motion; whence thofe that begin to want Spectacles, are obliged to hold the Candle between the Eye and the Paper they read, that the ftrong Light of the Candle may force their rigid, Pupils into fuch a Contraction, as may enable them to fee more diftinctly: for in a ftrong Light the Pupil contracts more forcibly, and to a greater Degree, than it can be made to do by the Senfation of Confufion Vol. I.

162 Of the Choroides and Uvea. Book IT.
only; confequently it is a Miftake to think, that, upon feeing an Object confufedly, the Pupil does always contract itfelf to the leaft Size it is capable of: The Degree to which the Pupil contracts, does in fome Meafure indeed depend upon the Senfation of Confufion in the Object; but it depends yet more upon the Degree of Light, as may eafily be proved in the following Manner:
§ 17. By Day-light, take a Book, and ftanding about the Middle of a Room, with your Back to the Window, hold the Book fo near, that the Letters may appear indiftinct, and yet not fo much but that you can read, tho' with fome Difficulty; then turn your Face to the Light, and the Book will be read with more Eafe.

Again, holding the Book at the fame Diftance from your Eye, go into the darkeft Part of the Room, and ftanding with your Back to the Light, you will find the Book not at all legible; but, upon coming to the Window, with your Face to the Light, you will be able to read, efpecially if the Sun fhines, with great Eafe and Diftinetnefs.

Alfo a Perfon who has been obliged for fome Years to ufe Spectacles in reading, will, in the Sun-fhine, be able to read very eafily without them.

Chap. VIII. Of the Choroides and Uvea. I63
From thefe, and fuch like Experiments, it appears, that the Contraction of the Pupil depends more upon the Strength of the Light, than upon the Senfation of Confufion in the Object. And this is the Reafon why fuch as begin to need Spectacles, hold the Candle between the Eye and the Paper they read, for caufing the Pupil to contract, that they may fee it more diftinctly; and their holding the Candle in this Manner, is a cerrain Sign that they begin to want Spectacles.
§ i8. If it fhould here be afked, why the Pupil is fo large in Children, and grows fmaller and fmaller continually, as they advance in Years, fo as in old Age to be fo very fmall as it is?

To this I anfwer, That, in Children, the Eyes are full and plump, from a plentiful Supply of all the Humours that diftend the Globe, by which Means the circular Edge of the Uvea, where it is joined to the other Coats of the Eye, muft be kept at a confiderable Diftance from its Centre, and confequently the Pupil muft be extended and drawn out to a confiderable Bignefs; and the natural State of the Pupil being a State of Dilatation, the Pupil muft on that Account remain in this dilated State, unlefs when the Mind interpofes, and wills it to contract, when the Light

164 Of the Choroides and Uvea. Book II.
Light is too flrong, or when the Pictures are not diftinct upoin the Retina.

This Largenef of the Pupil in Children is therefore to be confidered as natural to it, and arifing from the Make and Plenitude of their Eyes; and tho it Had been the ore Half fmaller thain it is, it would ftill have been efteemed large, becauife larger than afterwards in a more advanced Age; for nothing is great or fmall in itfelf abfolutely confidered, but only relatively to fomething elfe with which it is compared.

This whole Queftion therefore refolves into this, Why the Pupil grows finaller and fmaller continually as tve advarice in Years? The Anfiver to which is eafy:

For, as we Advance in years, the Pupil muft gradually diminiif, from the Decay that liappens in the Huniours of the Eye, and efpecially in the Aqueous, which always decays the minoft; for that thefe Humours gradually decay, feems evident from the Smallinefs and Sinking of the Eyes of elderly Perfons; and that the aqueous Humour decays the moft, feems evident; not only from the Flatniefs and Schriveling of the Cornea in fuch Perfons, but alfo from the prefoytical or Long-fight, that always increafes as we increafe in years, infomuch that in old Age we cannot read at all at an ordinary Dittance,

Chap. VIII. Of the Choroides and Uvea. I65
without the Affiftance of Glaffes, to fupply the Defect of Convexity in the Coriza, by increafing the Refraction ; for it is a Miftake to think, that an uniform Sinking in the the Coats and Humours of the Eye, can render the Eye prefbytical: This would have a quite contrary Effect, and the Eye, in place of becoming prefbytical, would become fhortfighted, as in Children, whofe Eyes are fmaller than thofe of Men; for the leat Diftance any Eye can fee diftinctly at, is in a Certain fixed Proportion to its Length, or the Diftance of the Retina from the refracting Humours; and therefore this preffoytical Sight argues a Flatnefs in the Eye, arifing from a Penury of the aqueous Humour.

Now, from this Decay and Scarcity of all the Humours of the Eye, the Eye muft neceffarily contract, and become lefs duld lefs by Degrees; by which means the outwatd Edge of the Uved will be brought nearer to its Centre, and confequently the Pupil will become narrower.

But this Narrownefs of the Pupil will be yet more increafed, by the greater Decay that is in the aqueous Humour; for the Tunicles of the Eye, at the Edge of the Choroides, where it joins the Uved, for Want of a fufficient Preffure from within at that Place, proceeding from the Peniury and Decay of the

166 Of the Choroides and Uvea. Book II.
the aqueous Humour, will be made to fall inwards towards the Axis of the Eye, by which the Uvea will become narrower, and the Pupil will be reduced to a lefs Size, than what would have happened had the whole Eye contracted uniformly over all.
§ I9. This Theory is greatly confirmed from what may be obferved as to the State of the Pupil in the Exophthalnia and Mir cropbthalmia.

In the Exopbtbalmia, which confirts in the immoderate Fullness and Diftention of the Globe, the Pupil is always greatly dilated; whereas, on the contrary, in the Microphthalmia, or Atrophy of the Eye, from whatever Caufe it may have proceeded, the Pupil is always found contracted; which Contraction can proceed from nothing but a Penury of the Humours of the Eye, and efpecially of the Aqueous; for it is alfo to be obferved, that when the aqueous Humour is loft or diminiflhed, by a Wound made in the Cornea, the Pupil prefently Contracts, and has its Size leffened, tho' the other Humours remain as they were before. This was taken notice of by Galen (de Symptom. Cauf. lib. r.) who therefore, with great Reafon, attributes the Corrugation of the Cornea of old Men, when it is accompanied with a Contraction of the Pupil, to a Scarcity of the aqueous Hu-

Chap. VIII. Of the Choroides and Uvea. 167
mour; whereas, when the Pupil continues of a natural Size, he afcribes the Symptom to the Cornea itfelf. But of this more hereafter.
§ 20. But there is yet another Reafon why the Pupil becomes fmaller, as we advance in Years, and that is, its frequent Contraction, in order to fee near Objects with fufficient Diftinctnefs.

For, when the Sight is perfect, that is, when it is neither two ftrong nor two wéak, and more efpecially when the Sight is prefbytical or weak, all Objects that are very near the Eyes will appear confufed and indiftinct: To remedy which Confufion, the Pupil contracts, and, by contracting, becomes frialler and fmaller continually ; for, by its frequent Contractions, to fee near Objects more diftinctly, the orbicular Fibres fhrink and become fhorter, by which means the Pupil becomes narrower ; juft as the Fingers of Work-people are much bended, by the frequent Contractions of the Flexores Digitorum.

It is therefore no Wonder, that the Pupil, which in Children is large, fhould gradually become narrower and more contracted as they advance in Age; for, as they advance in Age, the Sight becomes more and more prefbytical, which muft occafion the Pupil to contract more and more, for to fee near Objects diftinctly.

168 Of the Choroides and Uvea. Book II.
ftinctly. Whence we may fee, why the Pupil, which in Children is large, always continues pretty much fo in thofe who are Short-fighted; for in them near Objects appear diftinct, and therefore they are not obliged to contract the Pupil for feeing fuch Objects more diftinctly; and tho' diftant Objects appear confured, yet the Pupil feldom contracts for feeing them more diftinctly; bécaufe, when the Object is at a Diftance, it fends lefs Light into the Eye than what is neceffary for feeing clearly, unlefs when the Pupil is dilated.
$\delta 2 \mathrm{t}$, But there is yet a third Reafon why the Pupil becomes fmaller as we advance in Years, and that is, the different States and Conditions of the Cornea in the different Stages of Life.

In Children, the Cornea is extremely flexible and yielding, fo as to be very eafily bent int to a more convex Figure, when the Cryftalline is moved foryards for feeing near Ob jects more diftinctly; and the Comea being thus bent, the Cryftalline will not need to be brought fo much forwards, as it behoved to haye been for difinet Vifion, had the Cornea been more fiff and unfexible. Children will therefore fee near Objects diftinctly with a friall and eafy Motion of the Cryftalline, and will have little ogcafion to contraet their Papil for tendering their Sight diffinct. But

Chap. VIII. Of the Choroides and Uvea. $16 q^{\circ}$ in grown Perfons, the Cornea is fomewhat fiffer, and does not fo eafily bend; whence the Cryftalline will need to be moved more forwards, by a greater and more laborious Contraction of the Ciliary Procefs; to avoid which they will have frequent occafion to contract the Pupil for to enable them to fee near Objects more diftinelly. And in elderly Perfons this Contraction of the Pupil will be yet more neceffary for feeing more diftinctly at a fmall Diftance; for in them the Eye is not only flatter, but the Cornea being more rigid, is incapable of bending into a more convex Figure. And this is the Reafon why they can hardly read without Spectacles, un= lefs the Print be very large, or the Light very ftrong, fo as to caufe a great Contraction of the Pupil; for, as has been already noticed, in a ftrong Light the Pupil contracts more forcibly, and to a greater Degree, than it cari be made to do by the Senfation of Confufion only ; and it is for this Reafon, that elderly Perfons are obliged to hold the Candle between the Eye and the Paper they read ; and their doing fo, is a certain Sign they begin to want Spectacles. But all this will be better underftood from what is to follow concerning the Manner of Vifion, and the Ufe of the feveral Parts of the Eye conYol. I. Y cerned

I 70 Of the Choroides and Uvea. Book II.

cerned therein, which I fhall not now anticipate.
§ 22. The ingenious Dr. Whytr, in his Effay on the Vital Motions (Page I38.) has given us a different Solution of this Pbanomenon, which, tho' it be fuch as I cannot think fatisfactory, yet the Regard I have for the learned Author will not allow me to pals it by without noticing it.

He fays, "'In Infants, but more efpecially " in fuch as are newly born, the Pupil is " confiderably wider than in grown People, " where the Eyes of both are expofed to " the fame Degree of Light; I. Becaufe in "F Fetufes, and new born Chilldren, the Cornea " being thicker, lefs tranfparent, flatter, and " not fufficiently ftretched, on account of " the fmall Quantity of the aqueous Humour, "Vifion is very indiftinct, and the Retina " is lefs affeeted by the Rays of Light, which " are neither freely tranfmitted to, nor pro" perly collected upon it."

But, furely, if Vifion is very indiftinct in fuch Children, the Pupil ought to contract, to diminifh the Indiftinctnefs; for, by fuch a Contraction, the Indiftinctnefs is always leffened, whether this Indiftinctnefs proceeds from the Object's being too near or too far off for diftinct Vifion, or, which is the fame Thing, whether the Eye be too flat or too

Chap. VIII. Of the Choroides and Uvea. IフI
convex. This the Doctor feems not to have adverted to, elfe he would not have affirmed (p. I35.) "When we look at remote Objects, " the Pupil becomes wider, chiefly becaufe the "Contraction of its Sphincter Mufcle is no " longer neceffary to leffen the Diffipation " of the Rays." The contrary of which is fo evident, that the Doctor himfelf, on Reflection, will no doubt readily acknowledge it; and therefore the Pupil of young Children ought to contract, to diminifh the Indiftinctnefs ; and tho' in fuch Children lefs Light fhould be tranfmitted to the Retina, on account of the fuppofed Thicknefs and Want of Tranfparency in the Cornea, yet, according to this Gentleman's Principles, this ought not to hinder the Pupil from contracting; for, in the fame Page, he maintains, "That " the Contraction of the Pupil is principally " owing to a voluntary Exertion of the " Mind's Power in order to render Vifion " more diftinct, but, in a very fmall " Degree, to the ftronger and more vivid " Light which the Object reflects upoir tue "Eye ; " and, in confequence of this Principle, he, without Ceremony, and, in my Apprehenfion, fomewhat rafhly, accufes the juftly famous and truly learned Dr. Jurin of a Miftake in faying, "That in a faint " Light the Pupil is fo far from contracting
" in order to diftinct Vifion, that there is "s rather a Neceffity of dilating it in order " to take in more Light." (See the forementioned E(fay, p. I 34.) But, in my Apprehenfion, this Gentleman himfelf is the Perfon that is guilty of the Miftake, and not Dr. Jurin; for the Doctor has proved, by unexceptionable Experiments, that in a frong Light the Pupil contracts to a greater Degree than it can be made to do by the Senfation of Confufion only; and that upon feeing an Object confufedly, it does not always contract itfelf to the leaft Size it is capable of. (See his excellent Effay upon difinct and indiftinct Vifion, par. I 48.)

If it fhould be faid, that in Children the Pupil is dilated, becaufe lefs Light enters their Eyes on account of the Opacity of the Comea, and that the Indiftinctnefs of Sight, arifing from the Flatnefs of the Cornea, is not fufficient to prevent this Dilatation; I readily acknowledge, that the Reafoning is juft, tho' contrary to our Author's Principles. But, as Children are obferved to fee at leaft as clearly as afterwards when grown up, and much more fo than elderly Perfons, this Reafoning will not folve the Problem in queftion, becaufe built on an Error in Fact.
2. Another

Chap. VIII. Of the Choroides and Uvea. 173
2. Another Reafon brought by this learned Gentleman is, " becaufe Children want in a "great Meafure the Faculty of contracting " the Pupil in order to the more diftinct "Vifion of near Objects, which (fays he) " feems to be partly acquired by Habit." But, as I know no Reafon for thinking that Childrenare deprived of any Part of this Power, or that they acquire it afterwards by Habit, I cannot reft this Phanomenon on fo improbable a Foundation. We fee Children open and thut their Eyes, fwallow down their Food, and move all their Limbs with as much Agility and Eafe as afterwards. We fee they can bend their Body a good way back, and can bring their Toes to their Mouth, neither of which they can do fo eafily after that they are grown up; and the Mufcles of Refpiration, as well as thofe of Deglutition, perform their Office from the Birth, as well as at the Age of fifty; and therefore it may reafonably be prefumed, that Children can, from the Beginning, contract their Pupils, and that this Dilatation of the Pupil does not proceed from any want of Power in them to contract it. And to infer that Children want Power to contract the Pupil, becaufe in them it is found dilated, is to argue in a Circle: It is to conclude, that the Pupil is large in Children, becaufe they want the Power of contracting it; and that they have not the Power of contracting

174 Of the Choroides and Uvea. Book II.
contracting it, becaufe in them it is always large and dilated; which way of Reafoning will not fatisfy.

I might here add further, that it is not only a reafonable Prefumption, that Children from the Beginning are poffeffed of a Power of contracting their Pupils, but it has alfo been handed down to us as an eftablifhed Fact by the moft unexceptionable Authors. De la Hire himfelf, in the firf Page of his Differtation, fur le differens. Accidens de la Vüe, tells us this in the following Words: Les Enfons a caufe que leurs mulcles ot leurs tendons font encore fort mous, pervent avec facilité dilater beaucoup l' ouverture de la prumellé dans l' obfcurité, ot au contraire la refferrer extremement dans la grand lumiere, W_{0}

But our Author goes: on, and adds, that " in old People the Pupil becomes lefs move" able, becaufe the Retina grows lefs fenfible " of the Stimulus of Light, and the mufcular "Fibres of the Iris lofe in part their contractile "Power. Further, in old Age, the Cornea, " on account of the decreafe of the aqueous " Humour, not only lofes its Brilliancy, but " becomes alfo in fome Degree wrinkled; " whence the Retina will be lefs affected by " Light, and confequently the Pupil will be "lefs contracted." So far this ingenious Gentleman.

Chap．VIII．Of the Choroides and Uvea．1フぢ
But if，in old Age，the Retina grows lefs fen－ fible of Light（as will readily be acknowledged） the Pupil，in place of being contracted，ought to dilate itfelf，to take in more Light，＂efpeci－ ＂ally that（as our Author informs us）the muf－ ＂s cular Fibres of the Iris，（by which the Pupil ＂ 6 is contracted）have in part loft their con－ ＂tractile Power：＂For our Author acknow－ ledges，that＂the natural State of the Pupil ＂is that of Dilation，and that the longitudinal ＂Fibres of the Iris being much more con－ ＂fpicuous and ftronger than the circular Plan， ＂muft，by their natural Contraction，keep the ＂Pupil always dilated，unlefs the latter are ＂excited into Action by fome particular ＂Caufe．＂To me therefore it appears，that the Infenfibility of the Retina，and the Weak－ nefs of the contractile Power of the mufcular Fibres of the Iris，are fo far from having any hand in that Contraction of the Pupil，which gradually increafes as we increafe in years，that they ought rather to occafion a gradual Dilata－ tion of it．

And the fame thing may be faid of that ＂Wrinkling and want of Brilliancy（as he ＂calls it）in the Corwea，by which the Retina ＂becomes lefs affected by Light：＂For the lefs． the Retina fuffers by Light，the Pupil ought to dilate itfelf the more；as he himfelf acknow－ ledges，when he accounts for the Widenels of

176 Of the Choroides and Uvea. Book II.
the Pupil in young Children, from an Opacity and Thicknefs of the Cornen, thro' which the Light not being freely tranfinitted, the Retina is lefs affected by it.

There feems therefore to be nothing in this whole Paragraph which I have laft quoted that can any way affift us in accounting for the Widenefs of the Pupil in Children and its gradual Contraction as they advance in years : All that can reafonably be deduced from it, when properly explained, feems to be, that as we grow older, the Pupil ought gradually to become wider and lefs moveable; which, however, is far from being the Cafe; for it always grows narrower and more contracted:
$\$ 23$. There is alfo a great Variety in the Magnitude of the Pupil in Perfons of the fame Age. In the Myopes, or thofe who are Short-fighted, it is commonly very large; whereas, in thofe whofe Sight is perfect, and more efpecially in the prefbytical or weak Sight, it is much fmaller.

Several plaufible Hypothefes have been invented by Men of Learning and Ingenuity for explaining this Pranomenon. But, to fave time, I fhall not now examine them. What to me appears moft probable, may be gathered from what has been already faid; for when

Chap. VIII. Of the Choroides and Uvea. I7才
the Sight is perfee, and more efpecially when it is weak or prefbytical, the Pupil will have frequent occafion to contract for feeing near Objects more dictinetly: But, by thefe repeated Contractions, the orbicular Fibres muft fhrink and become fhofter, by which Means the Pupil will be made narrower; juft as the Fingers of Work-people become bended by the frequent Contractions of the Flexores Digitorum. But in thofe who are Short-fighted, this will not happen; for in them near Objects appear diftinct, and therefore not having occafion to contract the Pupil for feeing fuch Objects more diftinetly, the Pupil will continue large, much as when they were Children; for, tho' diftant Objects appear confured to fuch as are Short-fighted, yet the Pupil feldom contracts for feeing them diftinctly; becaufe, when the Object is at a Diftance, the Faintnei's of the Light caufes the Pupil to keep dilated for taking in more Light, that the Sight may be fufficiently ftrong and lively.
$\$ 24$. But there is yet another Reafon for this Largenefs of the Pupil in myopical Eyes: For underftanding which, it muft be obferved, that in the prefbytical or weak Sight, as well. as in that which is perfect, the Eye is more fenfibly affected, and fuffers more by great Light, than when the Sight is inyopical, with the fame Opening of the Pupil; for the lu-

$$
\text { VoL.I. } \quad \mathrm{Za} \text { minous }
$$

I78 Of the Choroides and Uvea. Book II.
minous Bodies that furround us, and which are not very near us, fend Rays into the Eye, which, in the Vijus perfectus, are brought together, and united upon the Retina, and make but a very fmall Bafe in the prefbytical Eye, whence the Impreffion made on the Retina will be ftrong and lively in both thefe Eyes, and muft therein caufe fome Pain and Uneafinefs. But this will not happen fo much in the myopical Sight, becaufe thefe fame Rays make a larger Bafe on the Retina; for all other Things being equal, the myopical Eye always fees Objects more confufedly than does either the perfect or prefbytical Eye: And this Confufion is caufed by the Space which the Rays that come from each Point of the Object occupy on the Fund of the Eye. This therefore is a good Reafon why the Pupil, which in Children is very large, continues more fo in thofe who are Short-fighted, than in thofe whofe Sight is either perfect or weak, and who, by reaion of the too ftrong Impreffion made upon the Retina by bright and luminous Ob jects, are obliged to contract the Pupil for keeping out a Part of the Light; whence the Pupil becomes gradually narrower.
$\$ 25$. The Pupil is alfo large in fuch as have black Eyes, and are of, a dark black Complexion; and on the contrary, in thofe who are

Chap. VIII. Of the Choroides and Uvea. I79
very fair, and have Light-blue Eyes, it is commonly a good deal.fmaller.

This was obferved by Aetius, and after him by many others, who therefore imagined that Black-ey'd People were moft liable to that preternatural Dilatation of the Pupil, which the Grecks called Mydriafis and Platycoria. But why the Pupil fhould thus vary with the Complexion and Colour of the Eyes, none of them have been able to explain.

The Reafon feems to be this: When the Eye-lafhes are black, the Eyes are better fhaded from the Light, and little Light will be reflected from their inner Side upon the Eye; and therefore the Pupil, which always dilates itfelf when the Light is faint, will keep wider than in thofe who, being of a fair Complexion, have their Eye-lafhes white ; for white Eyelafhes, by reflecting the Light copioufly into the Eye, muft make the Pupil contract, and become narrower. And this is the Reafon why the Pupil is fnall in fuch as are fair and have light-blue Eyes.
§ 26. From this Reflexion of the Light into the Eyes of fair People, they fee worfe in bright Day-light than towards Night; as was obferved by Aristotle, and after him by many others both Phyficians and Philofophers.

I80 Of the Choroides and Uvea. Book II,
I know that Plempius denies this, upon the Authority of fome of his Friends who were very fair. But I fufpect there has been fome Miftake in it; for having had occafion lately to be with a Gentleman of this Complexion, he owned to me that he faw beft towards Night, and could read much better than moft others in a faint weak Light, tho', as he affured me, he was not Short-fighted. And the fame thing is confirmed by that memorable Story which Monaltus tells us of one he knew, who, being very fair, faw ill in bright Daylight but better towards Night: But, as he advanced in years, his Eye-lafhes becoming lefs white, this Difference in his Sight by day and by night gradually diminifhed, and came nearer to what is common and natural. This Man being taken by the Turks, they dyed his Eye-lafhes Black, by which his Sight was greatly mended: But it returned to what it was before, when the black Colour was wafhed off. All this I have accounted for from the Colour of the Eyc-lafhes, towards the Beginning of this Treatife; to which therefore the Reader, if he pleafes, may have Recourfe.
§ 27. In Hollow-eyed People, or fuch as have their Eyes fet deep in the Socket, the Pupil muft alfo be large; and, on the contra1Y, when the Eyyes arc prominent, and advance forward

Chap. VIII. Of the Choroides and Uvea. I8I
forward to the Edge of the Orbit, or beyond it, it muft be much fmaller.
This I do not find has been taken notice of by Authors. But it is an obvious Confequence that muft follow from the Situation of the Eye; for when the Eye is funk in the Socket, it is more fhaded from the Light that comes from Objects at a Diftance from the Axis of Vifion, and towards which the Eye is not directed; and being thus fhaded, lefs Light will enter the Eye, and confequently the Pupil will dilate itfelf, and, by dilating, will become wider; whereas, when the Eye is prominent, it will receive Light, not only from the Object in view, but alfo from all the Objects round about it; for none of the Light being intercepted by the Orbit, it will all fall upon the Eye; whence the Pupil muft contract and confequently muft become narrower.
§28. It is from this fhading of the Eyes in Hollow-eyed People, and the Dilatation of the Pupil thence arifing, that they fee fo much better than others, and efpecially than thofe whofe Eyes are prominent.

For fince the Eye always fees beft from among Darknefs, not only on account of the Dilatation of the Pupil, but alfo becaufe the Picture on the Retina is not mixed with forreign Light which does not belong to the Object.
${ }^{9} 82$ Of the Choroides and Uvea. Book II.
Object in view; I fay, fince the Eye fees beft from among Darknefs, it muft alfo, for the fame Reafon, fee beft when fet deep in the Socket; for the Socket, by fhading the Eye, muft have an Effect fimilar to that of a long Tube, thro' which, when applied to the Eye, the Stars may be feen in the Day-time, when to the naked Eye they are quite invifible: Whence Plempius tells us, that he knew feveral Hollow-eyed People, who lying on their Back upon the Ground, and looking to the Heavens, could, in Day-light, fee the Stars, as well as from the Bottom of a Pit, or as thro' a long Tube applied to the Eye, (Ophthalmograph. Lib. iv. probl. x.) But thofe who have prominent Eyes do not fee fo well: But they have a Remedy at hand, whereby their Sight may be much improved; and that is, to apply their folded Hand to their Eye, thro' which they will fee as well as thofe who are naturally Hollow-eyed.
§29. There is alfo a great Diverfity with regard to the Magnitude of the Pupil, according to the different States and Conditions of the Coats and Humours of the Eye, and of the Retina on which the Rays are made to converge.

To explain this fully, would eligage us too far in Practice, and oblige us to explain feveral Difeafes of the Eye, fome of which

Cliap. VIII. Of the Choroides and Uvea. i83
have not as yet been rightly explained by the Generality of Authors. But as this does not fo properly belong to the Subject before us, and would take up a good deal of Time, I thall here only obferve, that, when the Humours are impure and muddy, the Pupil is always large, becaufe lefs Light is tranfmitted to the Retina: It is alfo large, when the Retina, from any Obftruction or Preffure upon the Nerve, has become lefs fenfible of the Impreffion made upon it by the Light. And this is the Reafon why the Pupil is fo very large in the Amaurofis or Gutta Sercna, in which the Retina is quite infenfible, by reafon of a total Obftruction and Paraly $/$ is in the Nerve.
§30. Maitre-Jean indeed affirms, that, in this Difeafe, the Pupil is no larger than what it is ufually, when we view Objects at a moderate Diftance, (Malad. de l' Oeil, p. 278.) But this is contrary to what others teach, and to what I myfelf have had frequent occafion to obferve; for, in the Amaurofis, the Pupil is always large, unlefs when complicated with fome other Difeafe which makes it narrow ; for the natural State of the Pupil being a State of Dilatation, when the Eye is infenfible of the Light, there is nothing that can hinder the Pupil from affuming that State of Dilatation which is natural to it.

184 Of the Choroides and Uvea. Book II.
It is indeed true, that, when one of the Eyes is only affected with this Difeafe, the Pupil of that Eye will dilate or contract according as the other Eye is fhut or open, or as lefs or more Light fhines upon it; for, having been accufiomed to move both Pupils together, a habitual or cuftomary Connection has grown up between their Motions, which makes the Pupil of the difeafed Eye fympathize with and follow the Motion of the other. And this, I apprehend, is what led Maitre-Jean into the Miftake he has fallen into with regard to the Magnitude of the Pupil in the Amaurofis; and that, finding it pretty much contracted when the found Eye was open, he concluded, contrary to the Opinion commonly received, that in this Difeafe it is not larger than what it is naturally, when. we view Objects at a moderate Diftance.
§ 31 . It is from this Muddinels and Want of Tranfparency in the Humours of the Eye, and from a beginning Obftruction of the optic Nerve, by which the Senfibility of the Retind. is impaired, that the Mydriafis moft commonly proceeds; for, fo far as I have been able to obferve, neither the Mydriafis, nor its oppofite, the Myofis or Phthifis Pupilla, are properly Difeafes of the Eye, but only Symptoms arifing from fome other Difeafe or Defect in this Organ; whence we may fee, why fome

Authors

Chap. VIII. Of the Choroides and Uvea. 185

Authors have defined the Mydriafis to be and Alteration of the vifive Faculty from tirbid Humours, and why others have told us, that, woben the Dilatation is neglected, it ends in a Suffulion or Cataract, From this alfo we may fee the Miftake which a great many Au thors thave fallen into, in afcribing all thofe Defects of Sight which they fee accompanying the Mydriafis and Myofis, to the Dilatation and Contraction of the Pupil; for few or none of thefe Defects arife from any fuch Caufe, but from that other Difeafe or Defect of the Eye from which that Dilatation and Contraction itfelf proceeds.
§ 32. In different Animals, the Pupils are of different Forms, according to their peculiar Occafions, and the Ufe they make of them both by day and night. In the Dog, Ape, and many other Quadrupeds, as alfo in Birds of all Kinds, and the greateft Part of Fifhes, the Pupil is circular, as in Man; by which they are enabled to fee equally well above and below, and on both Sides: But in Cows, Goats, Horfes, Sheep, and divers other Creatures, this Aperture is oblong or elliptical, its greateft Diameter lying tranfverfely towards the Angles of the Eye. In Cats, it is neither round nor elliptical, but in Form of an erect Fiffure croffing the Eye-lids perpendicularly. Thefe Differences are not the Effect of blind Vol. I.

A a
Chance,

186 Of the Choroides diud Uvea. Book II.
Chance, but of that wife Counfel and Defigu which Nature always employs in the Formation of all the Parts of Animals, for the beft Ends and Parpofes. But this will fall more naturally to be explained afterwards, when we come to account for the Differences in the Conformation of the Eyes of different Creatures.

C H A P. IX.

Of the Retina and Optic Nerve.

Sect. t. THE third Membrane of the Eye is the Retina, concerning which I have nothing I need to remark but what has been before taken Notice of in the general Idea of the Eye, which we fhall not now repeat; but fhall rather make fome Obfervations on the optic Nerve, of whofe medullary Subftance it is an Expanfion.

The optic Nerves arife from thofe Protuberances in the Brain, of old by Galem called Thalami Nervorum Opticorum; from thence they defcend towards the Bafis of the Skull, and going forwards, pals out of it in-

Chap. IX. Of the Retina and Optic Nerve. 187 to the Orbits by a Hole in their Bottom; at which Place they receive a Covering from the Dura Mater, and are inferted into the Back-part of the Globe, tho' not in its Axis, as Willis and Briggs maintain, but a little on the Infide towards the Nofe.

Thefe Nerves are the largeft of all the Nerves that arife from the Brain: Like all the other Nerves of the Body, they are nothing but a Bundle of very fine foft Fibres, which arifing from the Brain, are covered and tied together with the Membrane which they receive from the Pia Mater. Maligius, in his Epifte to Fracassatus, has obferved, that in the Tunny and Sword-fifh (Tbimmus and Xiphias) thefe Fibres form a Membrane, which being folded up into many equal Plaits, like a Fan, compofe the optic Nerves of thofe Animals; whence, when the Coats of the Nerve are removed, by unfolding thofe Plaits, the Nerve can be expanded out into a thin broad Membrane. This was not a new Difcovery in Malpigius; for it had been obferved long before by that great Anatomift Eustachiús (lib. de Axamin. Ofs.) But this Structure is peculiar to thofe Fifhes, and does not take place in Man and other Creatures. Rolfivcius indeed unwarily fays, that this Structure is general, and obtains in the optic Nerves of all Animals withont Exception,

188 Of the Retina and Optic Nerve, Book II.

Exception, (Difert. Arat. lib. iv. cap. 32.) But in this he is refuted by all Anatomifts; and even Malpig ius hinifelf informs us, that in Cows, Goats, Swine, © ©. whofe Eyes he had boiled a little, that they might be the better obferved with a Microfcope, he could find no fuch Foldings, but that the Nerve appeared to be a Bundle of longitudinal Fibres, each of which was covered with a Coat from the Pia Mater, and which, when the Nerve was fqueezed, fpewed out the foft medullary Subftance which they had from the Brain.
§ 2. Galen maintains, that the optic Nerves are hollow and pervious, having a Cavity in their Middle, by which they communicate at that Place where they are conjoined. This Cavity, he fays, was firft obferved by Herophilus, whofe Diligence in anạtomical Matters was fo great, that, according to Tertullian, he diffected no lefs then feven hundred human Bodies;

In this Galen was followed by a great many Anatomifts; for, till the Time of Vesalius, his Authority continued fo great amongt them, that few ventured to deny or difpute any Thing he had affirmed; and the learned Plempius, tho he rejects the Doctrine of Galen, with regard to this Communication betwixt the Nerves, yet agrees with

Chap. IX. Of the Retina and Optic Nerve. 189
with him in making them pervious, and defribes the Method by which their Cavities may be found. But, as many later Anatomifts have not been able to difcover thele Cavities, tho' they fought for them in the Manner recommended by Galen and PlemPIUS, I fcruple not to deny their Exiftence. I know indeed, that thefe Nerves are fomewhat foft and porous in their Middle, thro' which alfo an Artery runs; which may have impofed on fuch as entertained too favourable an Opinion of Galen, and others who had copied him. But I muft be forgiven to affirm, that they are never hollow, as Galen imagined. And in this I have the Authority of Carpus, Vesalius, Fallopius, Eustachius, Colter, Columbus, Velverda, Aquapendens, and other celebrated Anatomifts; none of whom could find any manifeft Cavity in thofe, or any of our other Nerves.
\$ 3. It is remarkable, that the optic Nerves are always conjoined above the Cella Turcica: And this Union is fo clofs, that Anatomifts are not agreed about the Manner of their Conjunction. Some contend, that they crofs one another in this Place, and that the Right-nerve goes to the Left-eye, and the Left-nerve to the Right-eye. What our juftly eminent Sir Isaac Newton's Opinion was, with regard to this Conjunction, may be

190 Of the Retina and Optic Nerve. Book II.
feen in thofe beautiful Queries he has annexed to his Optics. His Words are, "Are not " the Species of Objects feer with both Eyes "s united where the optic Nerves meet, before " they come unto the Braius; the Fibres on " the Right-fide of both Nerves miting "there, and, after Union, going thence into " the Brain, in the Nerve which is on the " Right-fide of the Head, and the Fibres on "s the Left-fide of both Nerves uniting in "s the fame Place, and after Union going into " the Brain in the Nerve which is on the Left"s fide of the Head, and thefe two Nerves " meeting in the Brain, in fuch a Manner that " their Fibres make but one intire Species or " Picture, Half of which on the Right-fide " of the Serforium comes from the Right"fide of both Eyes, thro' the Right-fide "s of both optic Nerves, to the Place where" in the Nerves meet, and from thence on " the Right-fice of the Head into the Brain; " and the other Half, on the Left-fide of the "Senforium, comes in like manner from the " left Side of both Eyes?",

Others again deny any Interfection or Croffing in thefe Nerves; but are as much divided amongtt themfelves in the Manner of their Junction; fome affirming, that they are only united by a clofs Cohefion, while vthers maintain, that at this Place of Union, there

Chap. IX. Of the Retina and Optic Nerve. 19:
there is a total Mixture and Confufion of Subftance; by which Means fome fuppofe, that the two Nervas are made to communicate with one another.

The learned Riolan (Animand. in Bauchinn.) affirms, that our optic Nerves are only conjoined by fimple Contact, and that only by means of an interjected nervous Tie in form of the Leiter H .
§4. For my own Part, I never could fee any fuch Tie in any human Subject ; and tho' it muft be acknowiedged, that our optic Nerves are fo clofely conjoined that their Subftances feem to be confounded, yet there are feveral Obfervations which plainly prove, that they are united only by a clofs Cohefion, without any Decuflation, Interfection, Mixture or Confufion of Subitance.

Thus Vesalius, Aquapendens, Valverda and losselius, tell us, that they have fometimes found thefe Nerves feparated thro' their whole Courfe from the Brain to the Eyes; whence we may fafely conclude, that they are always diftinct, tho' they are commonly united near the Infundibulum, by means of the Membranes that cover them.

The fame Vesalius has alfo more than once obferved, that one of the optic Nerves was friall and withered, thro' its whole Courfe

192 Of the Retina and Optic Nerve. Book II.

from the difeafed Eye, to which it belonged, to its Origin on the fame Side of the Brain, whilft the other Nerve, belonging to the found Eye, was quite full and plump, and kept always on the fame Side with the found Eye to which it belonged, (de Corp. Humi. Fabrica, lib: iv. cap. 4.)

Cesalpinus mentions fuch another Cafe which was feen at $P i f a$ anno 1590.

From thefe, and fuch like Obfervations, it plainly follows, that our optic Nerves do not interfect each other, nor mix and confound their Subftances, but are only united by a clofs Cohefion, without any Communication of Pores.
§5. If it fhould be here afked, For what Ends the optic Nerves are thus conjoined? The Opinion of Galen on this Head deferves, in the firf Place, to be examined.

This learned Greek tells us, that this happens on a twofold Account: Firft, That Objects feen with both Eyes may not appear double; and this he thinks is the chief Reafon why our optic Nerves are united; and he glories in the Difcovery, which, he fays, is worthy to be afcribed to fome of the Gods. (de Off. Part. lib. x. cap. 14.). In this he has been, and fill is followed by a great many learned Men, both Phyficians and Philofophers

Chap. IX. Of the Retina and Optic Nerve. I93

 lofuphers; fome of whon, to confirm this O pinion, have obferved, that in. Animals that do fot look the fame way with both Eyes, fuch as the Chamelion, Birds, and Fifhes, the optic Nerves are not united, but are diftinct thro' their whole Courfe; whereas, in Animals that look the fame way with both Eyes, as Men, Sheep, Dogs, Oxen, doc. they always meet before they come unto the Brain.§6. Thefe Reafons, it muft be acknowledged, are plaufible, and at firft View feem to render this Hypothefis very probable; and yet, when the Matter fhall be duly examined, I am confident, little Foundation will be found for any fuch Opinion. For,
i f, If this Conjunction were neceffary, to the end that Objects might appear fingle, the fame would alfo be neceflary in all our other Senfes, and every fimple Sound would be heard double, becaufe our Ears are double, and our auditory Nerves quite diftinct. But this is contrary to Experience; every fimple Sound being heard fimple as it is, 'tho' our auditory Nerves are fo far from being united, that they take a different arid almoft oppofite Courfe. Whence we conclude, that this fingle Appearance of Objects does not require that our optic Nerves fhould be conjoined.
$2 d l y$, When one of the Eyes is diftorted, either by a Spafm in any of its Mufcles, or
Vol.I.

194 Of the Retina and Optic Nerve. Book. II.
from its being preffed afide by the Finger, fo as to have its $A x i s$ turned away from the Object to which the other is directed, all Objects appear double, tho' this Diftortion does not diffolve the Union of the Nerves: Whence it follows, that this Union cannot be the Caufe why Objects are not feen doublé.

3 dly , It has been juft now fhown, from the Obfervations of Vesalius and Cesalpinus, that tho' our optic Nerves coalefce at the Cella Turcica, yet neverthelefs they keep diftinct thro' their whole Courfe, without any Interfection, Mixture or Confufion of Subfance, or Communication of Pores; and therefore this fimple Cohefion can contribute nothing towards the fingle Appearance of Ob jects.
$4^{\text {thly }}$, Tho' this Communication of Pores fhould be allowed, it could not caufe the Object to be feen fingle; becaufe thefe Pores are again divided, and proceed in this divided State to the Place of Senfation in the Brain where the Mind or Seitient Principle refides.

5tbly, Vesalius, Valverda, Aruapendens and Losseli us, fometimes found the optic Nerves feparated thro' their whole Courfe from the Brain to the Eyes; and yet thofe Perfons, when in Life, faw Objects fingle as other Men do, which would have been impoffible,

Chap. IX. Of the Retina and Optic Nerve. I95
ble, if this fingle Appearance had depended on the Conjunction of thofe Nerves.

6 thly, As this Conjunction of the optic Nerves can contribute nothing towards the fingle A ppearance of Objects, fo, on the other hand, this Phenomenon adrits of an eafy Solution, without any fuch Suppofition; there being nothing more required, but that we be poiferfed of a Power of feeing Things in the Place where they are: For tho' the Object be feen by both Eyes, yet being feen in the fame Place, it muft appear fingle; as we can have no Conception of the Penetration of Matter, or that two Things individually the fame can exift in the fame Place at the fame Time; and that we are poffeffed of a Power of feeing Objects in the Place where they are, is Matter of Experience; the Reafon of which fhall be explained afterwards in its proper Place.

In the mean time, from this we may fee whence it comes to pafs, that when the Picfures of two or two hundred fimilar Objects, either of the fame or of different Colours, are, by Means of as many convex Lenfes, caft from a Board upon a Wall, or a Sheet of white Paper in a dark Room, fo as all the Pictures may coincide and fall on the fame Place of the Paper, all thefe Pietures fhall appear but one, tho' there be really as many

ig6 Of the Retina and Optic Nerve. Book II.

of them painted on the Paper as there are Objects without. If thefe Objects are all of one Colour, this Picture will alfo be feen of the fame Colour; if they are of different Colours, it will appear of that Colour which refults from the Mixture of all the different Colours of the Objects. But whether they be of the fäme or different Colours, their Pictures will always appear fingle, becaufe feen in the fame Place.

And of the fame Kind with this Experiment, is alfo that which followeth: Let there be two fimilar Candles A and B, (fee Plate I. Fig. 5.) which are about three Feet diftant from the Board CD, in which is a large Hole at G ; and let them be fo difpofed, that the Eye E cannot fee the Candle A, nor the Eye F the Candle B; if both Eyes are directed to the Hole G, both the Candles fhall appears as one in that Hole; for tho' the Candle A is feen by the Eye F in the vifual Line FA, and the Candle B by the Eye E in the vifual Line $E B$; yet, as we always refer the Place of Objects to the Choropter or the Plan on which our Eyes are fixed, both Candles muft be feen in the fame Place G where the optic Axes FA and EB meet; and being feen in the fame Place, they muft appear as one; as is agreeable to Ex: perience.

Chap. IX. Of the Retina and Optic Nerve. 197

And as different Objects, when feen in the fame Place, appear fingle ; fo, on the contrary, the fame Object, when feen in different Places, always appears multipied, according to the Number of Places in which it is feen. Thus, in the former Experimert, if the Hole is fmall, and if the Eyes are directed to the middle Point H betwixt the Candles, the Hole fhall appear double. Thus alfo, when one of the Eyes is diftorted by a Spafin in any of its Mufcles, or by the Preflure of the Finger, all Objetts will appear double; the Reafon is, becaufe in both thefe Cafes the Object is feen in two different Places; as fhall be explained afterwards, when we come to treat of the Phemomena of Vifion. Thus alfo, when we look at an Object thro' a Polyedron or Multiplyingglafs, the Object appears multiplied according to the Number of plain Surfaces, thro' which it is feen; becaufe each of there Surfaces, by Reafon of the dificient Refraction that is made by them, makes the Object to be feen in a different Place; as thofe who have any Knowledge in Optics will eafily underftand. But to retarn ;
§7. Galen's other Reafon for this Conjunction of the optic. Nerves, is, that the vifive Rays or Spirits, which, according to him, contantly fream forth from the Nerves thro' both Eyes, for caufing Vifion, may, when
ig8 Of the Retina and Optic Nerve. Book II.
when one of the Eyes is fhut or loft, be all determined into the feeing Eye, for ftrengthening its Sight, and fupplying the Want of the other: It is from this greater Flow of Spirits, he accounts for that Enlargement of the Pupil that is always to be obferved when the other Eye is fhut or loft ; and as he imagined that the Pupil had no Motion, but that of dilating itfelf when one of the Eyes was fhut or loft, and again contracting itfelf when the Eye was opened or recovered, he efteemed this a convincing Proof of his Doctrine.

But that what Galen fays on this Head may be the better underfood, it muft be remembered, that tho' he was a great Difciple, and in many Things a flavifh Follower of Aristotle, from whom he borrowed moft of that Philofophy with which his Writings abound; yet with regard to the Manner in which Vifion is produced, he rejects the O pinion of Aristotle, and rather embraces that of Plato, who fuppofed, that both from the Eye and the Object there came fubftantial Effluvia, which meeting Half-way and encountering the ocular Effluvia, the latter were beat back again to the Eye, and there communicated the Impreffion they had received from thofe Effurvia which came from the Object, and fo produced the Senfe of Seeing. This being Galen's Opinion with re-

Chap. IX. Of the Retina and Optic Nerve. I 99
gard to Vifion, he might, from fuch Principles, well fuppofe, that the Sight behoved to be ftrengthened in Proportion to the Flow of vifual Rays or Spirits, which, ftreaming forth thro' the optic Nerve and Eye, enlarged the Pupil; and that the Conjunction and Communication of thofe Nerves enabled us to determine the whole of thefe Spirits to the feeing Eye, for Atrengthening its Sight, when the other was fhut or loft.
§8. But as Galen is greatly miftaken, both in his Theory of Vifion, and in his Theory of the Pupil's Motion, as will appear from what is to follow, we need not now wafte much Time in confuting him; and therefore fhall only obferve,

Firf \hat{f}, That this Doctrine can receive no Confirmation from the above mentioned Dilatation of the Pupil; and that becaufe that Dilatation never proceeds from any Efflux of vifual Rays or Spirits preffing open the Pupil, as Galen imagined, but from other Caufes, to be explained afterwards in their proper Place.

Secondly, This Doctrine is repugnant to what has been before noticed with regard to the Conjunction of the optic Nerves, which are only united by a clofs Cohefion, without any Confufion of Subftance, or Communication of Pores, thro' which the Spirits of both

200 of the Retina and Optic Nerve. Book'II.

Nerves can pafs to either of the Eyes, as need requires.

Thirdly, I deny, that, when one of the Eyes is fhut or loft, the Sight of the other is ftrengthened: It is indeed true, that, when one of the Eyes is fhut or loft, its Pupil will be enlarged; becaufe it always proportions itfelf to the Senfation of Light; whence the Pupil of the feeing Eye, which, for Reaforis that will be explained afterwards, always fympathizes with and follows the Motions of the other, will alfo be enlarged; and being thus enlarged, Objects muit appear fomewhat more bright and luminous, becaufe then more Light goes to the Formation of their Pictures on the Retina. But this does not make the Sight of that Eye ftronger, it being only in proportion to the Light that enters the Eye: Whence we conclude, that the Sight is not ftrengthened by any greater Flow of Spirits, as Galev imagined.
\$ 9 . What poffibly might have contributed to have led Galen into this Miftake, is a Suppofition, which I find many ftill entertain concerning the Degree of Brightnefs of an Object when feen with one Eye, and with both; at fift View, one is apt to imagine, that an Object feen with both Eyes fhould appear twice as bright and luminous as when feen only by one; and that becaufe each Eye gives us an

Chap. IX. Of the Retina and Optic Nerve. 201
equal Idea of the Object; which Idea, it may therefore be thought, thould be twice as flrong and lively, when both Eyes concur, as when only one. From this Suppofition, it is probable, that Galen might have been brought to conclude, that, as the Appeazance of Ob jects is much the fathe when feen either with one or with both Eyes, the Sight of the open Eye behoved to be greatly frengthened, while the other Eye remained fhut ; and for ftrength* ening it, he might be led to frame this Hypothefis, of a greater Flow of Spirits to the open Eye.

But it has been before demonftrated, from Dr. Jurin's accurate Experiments, that Objects feen with both Eyes are fo far from being twice as bright and luminous as when feen: with one only, that they are only about a thirteenth Part brighter ; which is fo trifling a Difference, that no body can be fenfible of it, inilooking at an Object alternately with one Eye and with both; and therefore there was no need of framing any Hypothefis to account for it. Befides, as the Pupil always dilates when the other Eye is ?hut, if this Dilatation lets into the Eye but a thirteenth Part more of the vifual Rays, this will be fufficient to make the Object truly, as well as to Senfe, as bright and luminous as when it was feen with both Eyes.

Vol. I.
C c
$\$ 10$.

202 Of the Retina and Optic Nerve. Book II.
§ ro. Having thus rejected Galen's O. pinion with regard to the Caufe of this Conjunction of our optic Nerves, it may be expected I fhould now fix on fome thing elfe.

What to me appears mof probable, is, that Nature hath conjoined thefe Nerves to ftrengthen and fix them in their Courfe; which being long, might have expofed them to the Danger of being fhaked, hurt, or turned out of their Place, on any quick or violent Motion, had they not been fixed and ftrengthened by this Junction. Nor is it any folid Objection to this, that in fome Creatures, fich as the Chamelion, Birds and Fifhes, they are always disjoined; fince Nature in fuch Cafes may have made ufe of other Means for fixing them, which fhe was not obliged to follow in Man and other Animals: And the like Anfwer may be made to the few Inftances that may be given of their having been found disjoined in Man.

A fecond Reafon for this Conjunction of there Nerves, is, that they might be perpendicular to the Eyes, at the Place of their Infertion: But, for underftanding what Benefit we receive from this, it muft be remembered, that Monf. Mariot te has demonftrated, that our Eyes are infenfible at that Place where the

Chap. IX. Of the Retina and Optic Nerve. 203
optic Nerves enter them: Whence it became neceffary that thefe Nerves fhould pierce the Globe on the Infide of the optic Axis; for, had they pierced the Globe in the optic Axis itfelf, then the middle Part of every Object had been invifible; and where all things contribute to make us fee beft; there we had not feen at all. We muft likewife have loft fome Part of an Object, if the optic Nerves had been placed either above or below, or on the Outfide of the optic Axis; becaufe an Object may be fo placed, as that all the Rays which come from one certain Part of the Objects may fall upon the upper, under, or Outfide of both Eyes: But it is impoffible that they fhould ever fall upon the Infide of both Eyes; and therefore, by this Infertion of the Nerves on the Infide of the optic Axis, that Part of the Object which is loft to one Eye, is always vifible by the other.

Now, fince it was neceffary that the optic Nerves fhould have been inferted on the Infide of the optic Axis, it was alfo neceffary that they fhould have been perpendicular to the Eye, at the Place of their Infertion; for, by that means, this Place, which is always infenfible, is made the leaft that is polfibie; and therefore Nature has wifely brought our optic Nerves together at the Cella Turcica, that from thence they might proceed perpendicu-

204 Of the Retina and Optic Nerve. Book II.
larly to the Place of their Infertion on the In? fide of the optic Axis; whereas, had they proceeded in a ftreight Courfe from their Origin in the Brain to the Place of their Infertion, they behoved to have fallen on the Eye obliquely; which would have enlarged the Place of their Infertion, and confequently would have enlarged that infenfible Part in the Bottom of the Eye.

CHAP. X.

Of the Aqueous Humour.

SECT.I.TTE have before obferved, that the aqueous Humour lies partly before and partly behind the Uvea, and fills all that Space which is betwixt the Cornea and the Cryftalline. The Space betwixt the Uvea and Cornea is called the Anterior Chamber of the aqueous Humour, and the Space betwixt the Uvea and Cryftalline is called its Pofterior Chamber: So that the Uved divides this Humour into two Parts, excepting in its Middle, where this Coat is perforated with the Pupil; by which means the aqueous Humour lying before

Chap. X. Of the Aqueous Himourt. 205
before the Uvea commanicates with that lying behind it.

The famous Monf. Brisseav, Phyfician to the King of France's Hofpitals, and Profeffor of Medecine in the Univerfity of Doway, was the firft I find who gave the Name of Chambers to thefé two Spaces. In this he was fooin followed by the learned Heister, and now the Term is univerfaliy received, on account of its Propriety and Significancy.

I have aiready noticed, from Dr. Petit, that the whole of the aqueous Humour weighs only four Grains; of this, according to the fame Author, only about a third Part is lodged in the pofterior Chamber; and therefore the Quantity contained iu this Chamber muft only be one Grain and one third; and the Quantity in the anterior Chanber two Grains and two thirds.

This Humour, like the Cornea and the other Humours of the Eye, is very clear and tranfparent. They are tranfparent, that none of the Light may be intercepted; and they are clear, that Objects may be feen in their own proper Colours; for, were they tinged with any Colour, all Objects would alfo appear tinged with that Colour.
§ 2. The Mechanifn by which this tranfparent Purity is preferved, is the fecretory Power of the Uven and Choroides, by which the Blood,

206 Of the Aqueous Humour. Book II.
Blood, which goes to fupply Nourifhment to the Cornea and Humours of the Eye, is freed of all thofe opaque black Particles, which could in the leaft tarnifh them, or diminifl their pure Tranfparency. Thefe black Particles, which may be called the Lees of the Blood, are therefore retained in the Choroides and Uvea, which are fullied and blackned therewith. And this may poffibly be one Reafon why thofe Creatures that fee beft, fuch as Eagles, and other Birds of Prey, have the Pupil very black; and, on the contrary, the Owl, Lion, and other Animals whofe Sight is not fo good, have this Hole lef black; becaufe the Bottom of their Eyes is not coyered with this black Pigment.

I know, that moft Authors fuppofe, that the Blacknefs of the Uvia ferves only for rendering this Membrane more opaque, that no Light may enter the Eye but what paffes the Pupil; and that the Blacknefs of the Choroides has no other Ufe, but to ftifle the Rays of Light that fall on it, that they may not be reflected back upon the Retina, which might efface the Images of Objects, or at leaft render them more confufed and imperfect.

But, if we confider, that the convex Backpart of the Choroides, next the Sclerotica, is likewife, covered with this black Pigment, and that
that in all Animals, even thofe which have its concave Side next the Retina of another Colour, as Aquapendens, in his Treatife de Oculo (Sect. 1. cap. 4.) obferves, we cannot but think, that it likewife contributes to the Prefervation of that pure Tranfparency in the Cornea and Humours of the Eye, which is fo neceflary for the Tranfmiffion of Light; and that becaufe there appears no other Reafon for the black Colour upon the Back-part of the Chooroides. Thus, as I have before obferved, the Lion, Camel, Bear, Ox, Dear, Sheep, Dog, Cat, and many other Quadrupeds, and even fome of the Bird-kind, that are not endowed with a good Sight, fuch as the Owl, and other nocturnal Birds, which have the Infide of the Choroides of a fplendid blue, green, yellow, pearl, or other bright Colour, are never found to want a confiderable Quantity of this black mucuous Pigment upon the convex or Back-fide of this Membrane; which can ferve for nothing elfe, but for rendering the Aliment, which goes to the Cornea and Humours of the Eye, more pure and free from thofe grofs black Parts which might tarnifh them, and render them unfit for tranfmitting the Light.
§3. This may be illuftrated from what happens in Jaundices; for, as in this Difeafe the whole Body becomes yellow from the Bile

208 Of the Aqueous Humour. Book II.
Bile which is not duly fecerned in the Liver, which y yellow Colour again difappears fo foon as the Obftruction is removed; 10, from a manifeft Analogy, there feems Reafon to think, that the Eye would foon lofe its Tranfparency, were it not for the lecretory Power of the Uvea, and Choroides by which the Blood is purified and freed of its moft opaque black Parts. Whence it is to be obferved, that Animals, whofe Blood abounds moft with blackifh Particles, have always thofe Membranes proportionally of a more intenfe black Colour: For it is remarkable, that thofe who have mof Blacknefs in their Hair or Feathers, have thofe Membranes alfo moft black. But I have dwelt too long on this Head, more efpecially that it will fall to be fpoke to again in treating of the Ufes of the Parts of the Eye. But as it naturally fell to be noticed here, I could not altogether omit it.
§4. The aqueous Humour is not only clear and tranfparent like Water, but is alfo nearly of the fame Confiftence; for, as Nuck has obferved, in many different Animals, its Confiftence very much' approaches that of the White of an Egg, well agitated into a thin Liquor: But, at different Ages, both its Colour and Confiftence is altered. In youth, it is very thin, clear and tranfpa-
rent; but it becomes thicker, more muddy, and lefs tranfparent, as we advance in Years: And in old Age it is frequently whitifh; which very much darkens the Sight, by obftructing the Rays of Light in their Paffage to the Retina. And this is one Reafon why many elderly Perfons do not reap all that Benefit from Spectacles which they are intitled to expect, when by them the Pictures on the Retina are made diftinct.

The Reafon why this Humour is made fo thin and fluid, is, that the Pupil might be the more eafily enlarged and leffened, according as its longitudinal or circular Fibres contract ; for, had it been of a Confiftence like that of the Cryftalline, or even that of the xitreous Humour, it behoved to have refifted the Motion of the Uvea, by which this Aperture is dilated and contracted.
§5. This Humour is altogether void of Smell, unlefs it be kept for fome Time, and then it finks like the White of an Egg that has become putrid. As for Tafte, it is almoft infipid, having only fome very flight Saltifhnefs, which is fcarce perceptible but in old Animals. It appears to be of a very Spirituous Nature, infomuch that a great many Authors, of whom Dr. Keill is one, thought that it could not be made to freeze in the greateft Froft. This I find was the general Opinion Vol. I.

D d of
of Phyficians and Anatomifts, till towards the Beginning of this Century. But in this they were much miftaken; as appears from the Experiments and Obfervations made on frozen Eyes, by Heister, Morgagni, Petit, and others. And the famous Bov le has alfo given us fome Obfervations on frozen Eyes, long before any of thefe Gentlemen wrote any thing on the Subject.
§6. But tho' this Humour can be made to freeze, it is neverthelefs very firituous and volatile, and, by exhaling thro' the Pores of of the Cornea, it diminifhes confiderably in a very little time; as all may have obferved in the Eye of an Ox, or other Animal, whofe Cornea after Death foon fhrivels and becomes flaccid, from the Exhalation of this Humour. The other Humours do alfo diminifh by Evaporation, when the Eye is taken out of the Head, and, being freed from its Fat and Mufcles, is fufpended in the Air. But this Evaporation is very inconfiderable, when compared to that of the aqueous Humour, which fometimes is altogether evaporated, when the other Humours have loft but a fmall Proportion of their Weight ; as Dr. Petit has obferved (Mem. de ${ }^{2}$ Acad. ann. I 728 .)
\$7. This Evaporation of the aqueous Humour, I apprehend, is the chief Caufe why the Pupil is fometimes found contracted after Death.

But, that this may be the better underitood, it muft be obferved, that the natural State of the Pupil is a State of Dilatation, änd its Contraction a State of Violence, occafioned by the Contraction of the circular Fibres of the Uvea. This is manifeft from its being fo very large in a Syncope, Apoplexy, Gutta Serena, ooc. for in thefe, and fuch like Cafes, as the Eye is altogether infenfible of the Light, fo all the Mufcles and mufcular Fibres have lof their Tone and their Power of Contraction ; and therefore the Pupil. muft of itfelf fall into that State which is moft natural to it. But, feeing in thofe Cafes it is always much dilated, it follows, that this is its natural State, and that its Contraction is a State of Violence, caufed by the Contraction of its circular Fibres. And this is ftill further confirmed by that dazzling Uneafinefs which twe all feel from ftrong Light, immediately after waking, when the Pupil may alfo be feen greatly enlarged.

This being premifed, it may be afked, whence it comes to pafs that the Pupil, after Death, in place of being enlarged, is fometimes found greatly contracted. That this is true, has been obferved by the accurate Mr. Winslow (Mem. de l' Acad. amn. 1721.) He there tells us, " that in the greateft Part of "the human Subjects he had examined, he " found the Pupil of a moderate Size, and fome-
" times greatly contracted, but never much " dilated."

There is alfo a memorable Paffage in GAien, to the fame purpofe, which ferves to fhew that Winslow was not the firf who obferved this Contraction, as fome have imagined. His Words, as they fand in La cu n e's Epitome, are: Porro, $\sqrt{ }$ alterimi oculum clauferimus, alterum aperientes, amplificatam et dilatatam, ac veluti inflataino pupillam cernimus, quod illuc major copia /piritus confluat. At in mortuo animali, vel fi bumor tenuis evacuatus non fit, laxa tamen pupilla videtur; quod nimirum Spiritus quiden iffe levior et teruior exifens, facile ante anatomen evacuatur; bumor autem adbuc remaneat fenfibilem evacuationem poffulans. (De UJu Partium, lib. x.)
§ 8. Now, this Contraction of the Pupil, after Death, at firf View, feems to be impoffible, on the Suppofition that its natural State is a State, of Dilatation; and from thence alfo it may be alledged, that its natural State is rather a State of Contraction : But, if the Matter fhall be duly confidered, fuch Difficulties will foon be removed. For,

Firt, Winslow does not fay, that the Pupil is never dilated after Death, but only, " that he niever found it much dilated;" which implies, that he fonetimes found it fomewhat dilated, tho' not to an extraordinary

Size;

Size ; and that it may be found confiderably dilated, if examined immediately after Death, and before the aqueous Humour has been diminifhed by Evaporation, may realonably be prefumed, from what has been obferved of its State in Faintings, the Apoplexy, Amaunofis, and immediately after waking. I had occafion lately to look at the Eye of a dead Cat, and found the whole Eye laid open, infomuch that no Veftige of the Iris was to be feen; which is a further Confirmation of this Doctrine. Add to this, that Mr. Mery, who it feems always happened to examine the Eyes foon after Death, pofitively affirms, that after Death, the Pupil is always dilated, (Hijt. de l'Acad. amn. 1710.) The Paffage is as follows: L'état où feront les fibres de l'iris, après la mort, Sera donc celui où leur refort les tient naturellement; or après la mort la prunelle efl toujours dilatée; c'eft-à-dire, que les fibres droits de l'iris font raccourcies; elles le font pareillement et dans le goute fereine, et dans la Syncope, dont l'une eft une mort de l'oeil par rapport à la vifion, et l'autre une petite mort de tout l'bomme, et toutes deux une privation d'efprits. C'eft dont l'état naturel des fibres de l'iris que d'eftre raccourcies, et de tenir la prunelle ouverte. But,
§ 9. Secondly, Tho' Winslow fometimes found the Pupil greatly contracted, yet this does not prove that to be its natural State, or weàker
the
the Arguments from which we conclude that its natural State is a State of Dilatation ; and that becaufe this Contraction, after Death, may arife from other Caufes, and particularly from the Caufe already mentioned, the Evaporation of the aqueous Humour: For Winslow does not tell us how long his Subjects had been dead ; but, as from the Paffage fo lately quoted from him, it appears, that he fometimes found this Aperture a little dilated, fometimes (and indeed for the moft Part) moderately contracted, and fometimes greatly contracted; it feems reafonable to fuppofe, that thefe different States of the Pupil proceeded from its being examined fooner or later after Death; and that immediately after Death, it was dilated, but afterwards contracted itfelf more and more, in proportion to the Evaporation of the aqueous Humour, that is, in proportion to the Time the Perfon had been dead, when his Eyes were examined: For, as in the Exophthalmia, or immoderate Fullnefs and Diftenfion of the Globe, the Pupil is always much dilated, of which NuC K gives an Inftance, where fcarce a Veftige of the Iris was to be féen, (de Duct. Ocul. Aquof.) fo, on the contrary, when this Humour becomes lefs in Quantity, the Pupil always contracts. This is no new Difcovery: It was obferved by Galen, as appears from the following Paffage, which
which I fhall fet down at large, as it ftands in the Tranflation : Caterum (fays he de Symptom. Cauf. lib. I.) incredibile quidam, nec fieri vulgo folitum, in puero vidimus, qui Stylo in pupilles loco fuerat compiunctus; nam quum fatim effluxiffet aquofus bumor, tum pupilla ipfa minor eft reddita, tum tota cornea apparuit rugofior. Caterum fanatus poftea recte vidit, collecto, fcillicet, paulation in eo qui effuxerat humor.

That this Contraction of the Pupil, after Death, proceeds from a Diminution of the aqueous Humour, and not from that's being its natural State, is ftill further confirmed, from what may be obferved in the Microphthalmia or Atrophy of the Eye; for, in that Difeafe, from whatever Caufe it may have proceeded, the Pupil is always contracted, which can proceed from nothing but a Penury of the Humours, and efpecially of the Aqueous. Nor is it to be doubted, but the Smallnefs of the Pupil, which always takes place in old Men, is likewife in a great Meafure owing to the fame Caufe; for in them the Eyes are fmall, funk, flatt, and fhriveled, from a Scarcity of the Humours which ufed to diftend and plump the Eye; whence the Pupil becomes fmall, as was alfo obferved by Galen; Solius etian Cornece ipfius corrugatio (fays he, de Symptom. Cauf. lib. 1.) qualis Jenectuti confestis Solet femper accidere, fimiliter vifum offendit; caterum, fi pupilla fimul fit imminuta, fcire licet
216. Of the Aqueous Humour. Book II.
aquofunn quoque bumoremi inminutum exiftere; fin vero aqualis permanjerit, ad folam ceratoidenz affectuis pertinet.
§ IO. For underfanding how a Diminution of the Humours of the Eye may occafion a Contraction of the Pupil, fee Fig. 6. Plat. I, where AVDVA is a Section of the Eye of an adult Perfon in its natural turgid State, C the Centre of the Eye, CV, CA, CV, Radii, which, according to PETIT's Obfervations, are each five Lines and one third part ; AD its Axis, which, according to the fame Author, is eleven Lines and one third part, viz. twice the Radius (or ten Lines and two thirds), and two thirds of a Line more, occafioned by the Prominency of the Cornea; VV, the Diameter of the U veen, which is five Lines; P the Pupil in its dilated State, which, from what I have faid before, is in grown Perfons about one third of the Uvea, or one Line and two third parts.

Now, let it be fuppofed, that the Humours of the Eye, are diminifhed, fo as to reduce its Radii to two third parts of a Line lefs than they were before; and let uauu be the Section of the Eye thus reduced, of which $\mathrm{C} u$ and $\mathrm{C} u$ are Radii, whofe Length will be four Lines and two third parts: It is plain, that, by the thrinking of the Eye from VAV to uau, the extreme Points of the Uvea Y and V will be made made to move along the Radii VC, VC, to the Points u and u, and that the Uvea of this florunk Eye will be $u u$.

Now, fince in the Triangle VCV; the Line, $u u$ is parallel to VV, it follows, that $\mathrm{CV}: \mathrm{VV}:: \mathrm{C} u: m u$. Hence $u u=\frac{\mathrm{VV} \times \mathrm{C} u}{\mathrm{CV}}=\frac{5 \times \frac{2}{3}}{5^{\frac{1}{2}}}$ $=4^{\frac{3}{8}}$; that is, the Uvea in this fhrunk Eye will be reduced to four Lines and three eight Parts, which being five eight Parts of a Line lefs than before, the Pupil alfo mult now be $\frac{5}{8}$ of a Line narrower than in its moft dilated State. But the Pupil, in its moft dilated State, is, as has been faid, one Line and $\frac{2}{3}$, from which if $\frac{5}{8}$ are deduced, there will remain $I_{\frac{x}{2}}^{\frac{x}{4}}$ for the Widenefs of the contracted Pupil p; but t is Pupil, which, in its moft dilated State, is one Line and $\frac{2}{3}$ in Diameter, cannot, by the ftrongef Light, be made to contract to a lefs Size than one Line and $\frac{\div}{2}$ Part, which is $\frac{2}{3}$ Parts of its former Diameter ; and therefore it is more contracted by this Diminution of the Humours, than it can be by the ftrongeft Light, and confequently muft appear greatly contracted; as Winisow obferved.

If it fhould be alledged, that I have fuppofed a greater Diminution of the Humours, and, in confequence of that, a greater Shrinking of the Eye than what can readily happen for a confiderable Time after Death; to this Vol.I.

Ee
it
it might be anfivered, that the Diminution of the Humours here fuppofed, is not fo great as what happens in the Space of twenty four Hours after the Eye is taken out of the Head and furpended in the Air; as is evident from Petit's Experiments, Mem. de l'Acad. am. 1728.

But, as it muft be acknowledged, that this Evaporation muft be a great deal lefs while the Eye remains in the Head, I fhall here fhew how this Contraction of the Pupil may happen to as great a Degree, tho' there be not fo great a Decay in the Humours as is here fuppofed; for, as in an Eye that hath been taken out of the Head, and furpended in the Air, the aqueous Humour always lofes moft by Evaporation, in fo much that in twenty-four Hours it is fometimes quite diffipated, while the other Humours have loft but a fmall Proportion of their Weight; fo when the Eye remains in the Head, which may indeed retard the Evaporation of thefe other Humours, this Evaporation of the aqueous Humour will continue much the fame; and therefore the Tunicles of the Eye, at the Edge of the Choroides, where it joins the Uvea, for want of a Preffure from within at that Place from the aqueous Humour, will be made to fall inwards towards the Axis of the Eye, by which the Uvea muft become narrower, and confequently the Pu-
pil muft be more contracted than what would happen, did the whole Eye contract uniformly over all.
Whence we may fee, how the Pupil may be greatly contracted from a Diminution of the aqueous Humour alone, tho' the other Humours fhould continue in their natural Quantity; as was obferved by Galen, when the aqueous Humour was voided by a Wound in the Correa. And, I am perfuaded, from the Smallnefs and Sunknefs of the Eyes of elderly Perfons, and from the Need they have of Spectacles, that there is a great Decay and Scarfity of the Humours of the Eye, efpecially of the Aqueous, from which Decay that Contraction, which is to be feen in their Pupils, is chiefly to be accounted for; as has been before noticed.
§ II. I have faid, that the aqueous Humour foon Putrefies, and acquires a Smell like that of a rotten White of an Egg. Now, from this it follows, that, if this Humour continued in the Eye without Circulation, it would foon, by the Heat of the Body, be made to degenerate into an acrid Corrofive Ichor, which, by fretting and corroding the Parts, would foon fpoil the Eye, and render it for ever ufelefs.
§ 12. and this Circulation is yet further confirmed by what happens in Wounds of the

Eye; for, after that the aqueous Humour has iun out by the Wound, and the Cornea thereby become flaccid; in a few Days it again becomes plump, from a frefh Supply of this Humour.

This likewife was known to Galen, as appears from the Paffage fo lately quoted from him. But, for a long Time, it feems, the genierality of Phyficians either over-looked this Paffage, or did not believe it; for Hend. $a b$ Heers was greately furprifed to find, that the Eye of a Gentleman's Daughter, and thofe of a Cock, when wounded fo that the Cornea funk, were again reftored by a Litfuamian Chymift, who paffed for a Conjurer, by the Ufe of a Liquor found in May in the Veficule of Elm: (Obf. Med. Obf. 4.) And thofe that are knowing in the Hiftory of Medicine, will remember what Noife the famous Burrhy made about the Year 1662 with his Eyewater, which being injected into the Eye of a Dog, Goofe, ${ }^{\circ} c$. after that all the Humours, the Cryftalline and Vitreous, as well as the Aqueous, had been expreffed by a Wound made in the Cornea, the Animal, to every body's Surprife, in a few Days recovered its Sight again, and no Defect was to be feen in the Eye, excepting a very flight Scar on the Cornea. (Vid. Bartholin. Epif. Cent. 3. Epift. 99. and

Chap. X. Of the Aqueous Humoon.
and 100. item Act. Med. Hafn. amin I671. and I672. Obf. I32. and I33.)

When Phyficians came at laft to believe that the Sight could be reftored after the Eye had loft the aqueous Humour by a Wound, they generally attributed the Cure to certain fpecific Applications, which they extolled as valuable Secrets, fuch as the above Water found in the Veficule of the Elm, Waters drawn from Celendine and other choife Ingredients, Waices made of Vitriol of Mars, myfterioufly prepared, Powders and Waters made of Catechu, and offer valuable Ingredients, the Noftrum of Burrhy communicated to the famous Barti oline, doc. But fuch Wounds need no fuch celebrated Arcana. Nature herfelf eafily cures them, without any Affifance, provided only fuch Applications are made as may prevent Inflammation and a Flux of Humours on the Eye. Of this Multitudes of Obfervations are every where to be met with. in our more modern Authors.

In the Year 1670 , this was expelimented upon a Goofe by Dr. Dantel Major: The aqueous Humour of both Eyes they let out fo that the Eye fell, and the Goofe became quite blind: But, without the Ufe of any Medicine, in about two Days time, Nature repaired the watry Humour again, the Eyes returned to their former Turgency, and, which

Ahows how little fuch Stories were at that Time credited, the Goofe was in a Week after produced feeing, before no lefs than 28 or 30 Spectators: (Ephem. Germ. Tom. I. Add. ad Obf. IIク

The like Experiment was made by SCRIverius upon a Goofe, a Cock, and a Hen; all of whom, after having the whole of the Humours fqueezed out of the Eyes, again recovered their Sight, without the Affittance of any Medicine. (Act Hafn: amn. 1671, and 1672, $06 \int$. I33.) And we ourfelves may have frequent occafion to fee this verified with regard to the aqieous Humour, in the Operation of the Cataract; for the aqueous Humour that always runs out, when, from the Difficulty of the Operation, the Operator is obliged to keep the Needle long in the Eye, is again foon fupplied; as every body muft have obferved who have been verfant in that Operation. And in the new Way of this Operation, in which the Cryftalline is extracted, it is always attended with a total Difcharge of this Humour, which neverthelefs is foon reftored, without the Affiftance of Medicine, and even is increafed to a greater Quantity than what is natural, to fill the Place of the Cryftalline.
§I3. This gives occafion to a Queftion, How this Humour is fupplied, and by what means

Chap. X. Of the Aqueous Huntour. 223
it circulates? The learned Nuck, who has acquired no fimall Reputation by his Anatomical Works, pretends to have difcovered a Veffel which brings this Humour into the Eye, and after him Hovius publifhed a Treatife concerning the Circulation of thofe Humours, wherein he pretends to have clearly demonftrated the abducent as well as adducent Veffels.

But to me it appeass, that thofe Veffels muft be much fmaller than what can be obierved by the Eye, otherwife the Humours they carry would be compofed of grofs opaque Parts, altogether unfit for tranfmitting the Rays of Light; and therefore it feems more than probable, that Hovius has impofed on himfelf and others, in the Account he has given of thofe Veffels, as well as Nuck.

What I efteem mof probable in this Matter is, that the Blood brought to the Choroides by the Arteries already defcribed, is freed from its moft opaque grofs Parts by the Secretion of that black Mucus, upon both Sides of the Choroides and Uvea; and that it is further attenuated and fubtilized by the many Turnings and Windings thofe Arteries make in forming Plexufes and Net-works upon thefe Tunicles; after which, its moft fluid and tranfparent Part is received into fmall lateral Branches, from which again others yet fmaller arife,
arife, and perhaps again from thefe yet many Seriefes of other Vefiels fuillimaller and fm it ler; which lait being extremely fmall, muft exclude all the grofs opaque Particles, and admit only the moft fubtile and tranfparent ones. And we are of opinion, that thefe laft Veffels, which, by Reafon of their Smallnefs, are quite invifible, by opening every where on the Infide of the Cornea, both Sides of the Uvea and Fore-part of the Capful of the cryftalline Humour, $\mathrm{b}^{\circ} \mathrm{c}$. do conita t ly difcharge this tranfparent Liquor into ts proper Cavity; which, that it may not flagnate, is again abforbed by frnall Pores, which are the Mouths of lymphatic Veins correfponding to thefe Arteries. And this feems to be the true natural way of Circulation of this Humour, and does excellently well account for its Regeneration, after it has been evacuated by a Wound in the Cornea.
§ 14. We are the more confirmed in this way of Circulation of the aqueous Humour, from what happens in other Parts of the Body. In the Cavity of the Pericardium, Ventricles of the Brain, the Cavity of the Thorax and Abdomen, and, in general, in all the Cavities of our Body, there is always found more or lefs of a ferous Liquor, which can only come from the Arteries, which, by fmall lateral Branches, muft convey this. Liquor into thefe Ca-

Chap. X. Of the Aqueous Hurnour. 225
vities: But, were it not again abforbed, it would foon be accumulated in too great Plenty, and in the Head form a Hydrocephalus, in the Thorax, a Hydrops Pectoris, and in the Abdomen, a Hydrops Afites, and fo forth; and therefore provident Nature has in all thefe Cavities wifely placed Pores by which this Liquor is again returned into the Veins; it being a general Rule, That wherever there are exhaling Veffels, there are likewife inhaling or abforbent ones. Thus in the Skin, as the Perfpiratio Sanctoriana is conftantly exhaled, fo by abforbing Pores, Humidities are conftantly inhaled, as evidently appears from what happens from the Application of Fomentations, Cataplafins and Blifters, and efpecially from the Application of Mercureal Unctions.
15. When thefe exhaling arterial Veffels of the Eye are any way enlarged, or when their correfponding abforbent ones are obftructed, then the aqueous Humour will be accumulated in too great a Quantity, and, by diftending the Cornea, will form that painful and obftinate Difeafe called Exophthalmia and H) drophthalmia, in which the Pupil is always enlarged; as has been before noticed.

> VOL.I. Ff CHAP.

226 Of the Cryfalline Humbur. Book II.

C H A P. XI.

of the Cryftalline Hunour.

SEOT.I. TTTE have before obferved, that the Cryftalline is the moft folid of all the Hunours of the Eye. From its Solidity and Tranfparency the Antients concluded, that it was nothing but a thick congealed Humour. But, tho' it be commonly called a Humour, yet it is really made tip of folid Paits; for, in a Cryftalline that has been dried, or that has been hardened, either by boiling in Water, or by being fteeped in one Part of Aqud Fortis anid three Parts of common Water, it is eafy to obferve, that it is made up of many thin fpherical Lamine or Plates lying within each other, like fo many Boxes of equal Figures, but different Magnitudes, or rather like the different Pellicles or Plates which compofe an Union. Mr. Leeutivenhoek reckons there may be two thoufand of them in one Cryftalline, from the uttermoft to the Centre... Every one of thofe Laminic or Scales, he faith, he hath difcovered to be made up of one fingle Fibre or finent Thread,

Thread, wound in a moft ftupenduous Manner, this way and that way, fo as to run feveral Courfes, and meet in as many Centres, and yet not to interfere or crofs one another in any one Place. In Oxen, Sheep, Hog', Dogs and Cats, the Thread fpreads into three feveral Courfes, and makes as many Centres; in Whales five; but in Hares and Rabbets only two. In the whole Surface of an Oxe's Cryftalline, he reckons there are more than 12,000 Fibres justa-pofited. But, for the right and clear underftanding of the Manner of this admirable Piece of Mechannifm, I fhall refer to his Cutts and Defcriptions in Pbilof. Tranf. $\mathrm{N}^{\circ} 165$. and 293.

I know the Truth of this furprifing Mechanifm has been queftioned by fome ingenious Men. But it has fince been confirmed by the Obfervations of others, and particularly of the learned Mr. Derhain, who, in his Pbyficotheology, undertakes to fhew it to "any body with the Help of a good Microfcope.
§ 2. Now, the Cryftalline, tho' it be all very firm and folid in refpect of the other Humours, yet it is not all throughout of the fame Confiftence being outwärdly like a thick Gelly, but towards the Centre as confiftent as hard Suet. This external foft Part feems to be about the third of its whole Bulk. Thofe who maintain that the Cryfalline
228. Of the Cryjalline Humour. Book IF.
line changes its Figure, and becomes more or lefs convex in proportion to the different Diftances of Objects, think that its by means of this external foft Part that it is difpofed to alter its Figure; which could not fo eafily happen, were it all of the fame Confiftence with its other Part next the Centre. But as this will fall to be treated of afterwards, in explaining how we come to fee diftinctly at different Diftances, it is umeceffary to enter upon it here ; and therefore I fhall only reniark, in general, that tho' the Cryftalline does not alter its Figure, yet this Difference betwixt the Confiftence of its external and internal Subftance does not want its Ufe, as will appear from what is to follow.
S3. At different Ages this Humour is of different Confiftencies. In Children newly born, it is very foft, and equally fo over all. Petit fays, that in them, as well as in Ferufes, it is like cold Broth, (Boullie refroidie) Mem. de l'Acad. ann. I730; but it grows firmer gradually as they advance in Years, but moft fo in its Middle towards the Centre, where, in time, it becomes firm like Suet ; and tho' it continues fill to increafe in Firmnefs, this Inequality in, its outward and inward Parts ftill continues, excepting in old Age, when it has acquired its greateft Firmnefs,

Chap. XI. Of the Cryfalline Hilunourt. 229. and then this Firmnefs is fometimes equal over all.
§ 4. The human Cryftalline is always: fofter thian in Birds, Qaadrupeds and Fifhes, all of which have it more and more firm, int the Order they are named. In Fifh, the central Part is almoft as hard as Homi ; and, on the contrary, its external Part is fofter than: in other Creatures, and is like a Mucilage; fo that it appears like a double Cryftalline, the one very fall and folid in the Centre of the other, which is larger, but of a Subflance much lefs firm and 'folid.
This little Cryftalline, which is as it were a Nucleus or Kernel to the other, in whofeCentre it is placed, is never found wanting in the Eyes of Fifhes; which fhows that it is not the Effect of blind Fate, but to anfwer fome wife and neceffary Purpofe; as fhall bee explained afterwards.
§ 5. I have faid, that this Humour has. no Colour, being clear and tranfparent like Water: But, about the twenty-fifth or thirtietiz: Year of our Age, it begins to become a little yellow towards the Centre, which:Yellownefs grows gradually deeper and deeper, and ex- teinds more and more towards the Surface, in fo much that Dr. Pettre found, that the Cryftallines of a Man of 8 r Years old, refembled
refembled two Pieces of beautiful yellow Amber (Mem. de l' Acad. mmn. 1730.)

This Yellownefs wherevith the Cryftaline is more and more tinged as we advance in Years, muft make all Objects appear -more and more tinged with that Colour: Nor does our being infenfible of any Change in the Colour of Objects, prove to us, that their Colour continues the fame; for that we may be fenfible of this Change of Colour, the Tincture muft not only be confiderable, but it muft happen on a fudden; as has been already fhewn at fome Length in the general Idea I have given of the Eye. © 6. The Figure of the Cryftalline is different in different Animals.

In Animals that live conftantly in Air, as Man, Quadrupeds, and the greateft Part of the Bird-kind, it is always lenticular; but, in Fifhes, that refide conftantly in Water, its Figure is that of a Sphere or Globe; and in thofe Creatures that are fometimes in Air, and other times in Water, and who have therefore occafion to fee in both, as the Sea-Calf, Cormorant, doc. this Humour has a middle Figure, betwixt that of a Lcns and a Globe.

Thefe different Figures are not the Effect of Chance, but of Skill and Defign, and are the very beft that could have been contrived

Chap. XI. Of the Cryfallinie Huntiotit. 23 !

for perfecting the Sight of thefe Aniz mals, being exactly fitted to their feveral Circumftances and Occafions, as thall be fhewn afterwards.
§ 7. I have obferved before, that the Cryftalline Lens is more convex behind than before; the Diameter of the Sphere, of which its anterior Segment is a Part, being from 6 to 12 Lines, but moft commonly about $7 \frac{1}{4}$ or 8 Lines, according to Mr. Petit's Obfervations; whereas the Diameter of the Sphere, of which its Pofterior Segment is a Part, is commonly only about 5 or 6 Lines. The fame Author makes the Diameter or Breadth of this Lens about 4 Lines, or $4 \frac{1}{2}$, and its Axis or Thicknefs 2 Lines. But thofe Meafures, like the Meafures of the other Parts of the Eye, differ confiderably in different Perfons, and even in the fame Perfon at different Times of Life; and as it is fcarce poffible to meafure the Cryftalline and the other Parts of the Eye with that Exactnefs that may be depended on, all nice Calculations founded upon fuch Meafures, muft be fallacious and uncertain, and therefore fhould, for the moft part, be looked on, rather as Illuftrations, than ftrick Demonftrations of the Points in queftion.
§8. It has been generally thought by Anatomifts, that all the Humours of the

232 Of the Cryfalline Humour. Book II.
Eye are of different Denfities, and that the Cryftalline is much more denfe than either of the other two. Dr. Briggs fays, that the Cryftalline is three times denfer than the Vitreous, and that the Vitreous is three times denfer than the Aqueous. But the learned Dr. Robertson has informed us, that; upon weighing thefe Humours in a hydroftatical Balance, he found, that the fpecific Gravities of the aqueous and vitreous Humours were very nearly equal, and each much the fame with that of Water; and that the fpecific Gravity of the Cryftalline did not exceed the fpecific Gravity of the others in a greater proportion than that of about II to 10 ; for the mean - pecific Gravities of five cryftalline Humours of Oxen's Eyes, and of three cryftalline Humours of Sheep's Eyes, were III 34 and IIO33, the fpecific Gravity of Water being 10000, and the Mean of thefe Means is 11083 ; which may therefore be prefumed to be the fpecific Weight of the human Cryftalline, and, of confequence, is to that of the other Humours, nearly as II to 10 .
§9. Whence it follows, that the Cryftalline is not of fuch great Ufe in bringing the Rays together, and thereby forming on the Retina the Pictures of outward Objects; as it was commonly thought to be by optical

Writers;

Chap. XI. Of the Cryfalline Humour. 233

Writers; for tho' in Shape it refembles a double convex Lens, and on that account is fitted to make the Rays converge; yet, for as much as it is fituated between two Humours, which are nearly of the fame Denfity with itfelf, it can have but little Force on the Particles of Light ; for they are found by Experience to be refracted very little in paffing out of one Medium into another, when the Difference in the Denfities of the Mediums is but fmall. From this we may fee the Reafon why the Sight continues after the Operation of the Cataract, in which the Cryftalline is depreffed or extracted, and why a convex Glafs is fufficient to fupply the little Refraction that is wanting in the Eye, from the want of this Humour.
§ 10. We may from this alfo fee, how the Sight may be recovered again, after that all the Humours, the Cryftalline and Vitreous, as well as the Aqueous, have been expreffed by a Wound made in the Cornea; for, if thefe Humours can be expreffed without hurting the Retina, or immediate Organ of Sight, Nature cures the Wound, and again reftores the aqueous Humour, fo as to fill the whole Globe, and reftore the Eye to its former Turgency; by which means the Light will be as much refracted as in an Eye that has had the Cryftalline depreffed in the Operation of the Cataract ; and

[^0]
234 Of the Cryfalline Humozit. Book II.

confequently the Eye muft again recover its Sight.

That Geefe and Hens do thius recover their Sight, after that all the Humours liave been squeezed out by a Wound in the Cornea, is manifeft, from the Experiments of Burrhus and SCRIVERIUS formerly mentioned; and the fane Tluing is alfo confirmed by the learned Kirkrinefus:; for, in his Spicelegiumt. Anatomicum (Obferv. c.) he tells us, that, without any Affifance from Burkhus, or any Body elfe, he of himifelf, had at laf, after many fruitlefs Experimients, fallen on a Way of reftoring the Sight of any Aninal, after thatthe whole Humours had been fqueezed out of the Eye bya Wound made in the Cornea; and adds, that, for Trial's fake, he had repeated the Experiment three times furceeffively on the fame Dog, and had as often cured him, and reftored his Sight. He indeed attributes - the Cure to his Medieine, which he therefore chules to conceal, and only tells us, that it is neither-made of Celondine, nor of the Vitriol of Mars, and that he had no Hint of it from Burrhus, or any Body elfe, but that it was intirely his own Difcoveryz But this Medicine does not appear to have had fo deep a Share in the Cure as Kirkringius imagined ; for, as has been béfore obferved, SCRIVERI U's performed the like Cure upon a Goofe, a

Chap. XI. Of the Cryfalline Humourt. 235
Cock, and a Hen, without the Affifance of any Medicine whatever; and if the fame Thing does not happen to Man, this muft proceed fron the Hurt done to the Eye itfelf, and efpecially to the Retina, and not from the Want of thefe Humours which may be fupplied by an Accumulation of the aqueous Humcur ; for Mer do not recover of Hurts fo eafily and fully as other Creatures do: If they did, they might alfo recover their Sight after having lof the whole Humours of the Eye; for the aqueous Humour, by being acrumulated, could in them fupply the Want of thefe Humours, as well as in cther Creatures.
\$ II. To what has been faid concerning the fmall Degree of Denfity and fpecific Weight of the Cryftalline above that of the other Hu mours, it may be objected, that MaitreJean found, that this Humorir did not only defcend to the Bottom of Water as quickly as a Stone, but likewife defcended in like Manner when thrown into Aqua Fortis and Spirit of Vitriol; from which he concludes, that it is a very denfe and heavy Body (Malad. de l'Ocil, cap. xi,)

But it would appear, from what Mr. Perit has obferved, (Mem. de l'Acad. ami. 1730); that Maitre-Jfan's Experiments were not performed with fufficient Accuracy; for tho' Petit obferved, that the Cryfaline of an

236 Of the Cryftalline Humowr. Book II.
Ox fell immediately to the Bottom of Spirit of Vitriol, yet the human Cryftalline floated in it, and did not defcend till next Day that its fpecific Weight was fufficiently increafed by the Action of the acid Spirit: He likewife found, that the Cryftallines both of Men and Oxen floated, not only in plane Spirit of Nitre and Spirit of Salt, but alfo in dulcified Spirit of Salt, and in Spirit of Nitre mixed with an equal Quantity of common Water, tho' in this Mixture they afterwards fell to the Bottom, by having their fpecific Weight increafed: That of an Ox, in an hour and a Half, but that of a Man, not till next day. And this, without further Reafoning, I think fufficient to vindicate Dr. Robertson's accurate Experiments, in which no lefs than eight Cryftallines were weighed in a hydroftatical Balance, from any Sufpicion of Miftake that may arife from what has been noticed from MaitreJean:
§ I2. It is remarkable, that this Lens has no vifible Attachment or Communication with any Part of the Body, but is keptin its Place by Means of its Membrane or Capfule, with which neverthelefs it has not the leaft Connection. This Capfule has always a little Water in it; in fome Creatures more, in others lefs, which ferves to nourifh the Cryftalline, to preferve its Tranfarency, and keep it from adhering to

Chap. XI. Of the Cryjtaltine Humour. 237
its Capfule ; whence this Humourdrops out of itfelf fo foon as its Capfule is opened, as has been obferved by Maitre-Jean, Dr. PeTIT, and others; who therefore fcruple not to affirm, that, of all the Parts of our Body, the Cryftalline is the only one that has no Continuity or Connection with the Parts adjacent, by any Fibre, Blood-veffel or Nerve. And, indeed, was there any fuch Connection, it could not fail being obferved, efpecially in large Animals, fuch as Horfes and large Fifhes; for the larger the Animal is, there is, generally fpeaking, the more of this watry Humour furrounding the Cryfalline; by means of which this Connection would be the more eafily difcovered. Its Quantity, in the Eye of a Man, is indeed but fmall ; it does not commonly much exceed Half a Grain. But in the Eye of a Bull-dog, it weighs one Grain and a Half; in Sheep, two Grains; in Oxen, four Grains; and in Horfes, no lefs than twelve Grains; as Petit has obferved (Mem. de l'Acad. ann. 1730); and yet no Connection has ever been found in any Animal, not even in Oxen, Horfes, and large Fifhes, where fo much of this Liquor is found.

If there were any Veffels which paffed from the Capfule to the Cryftalline, Ruyscta's fubtile Injections muft have difcovered them. But we find he could never go further than the Capfule, and that only by punhing forward the Blood

238 Of the Cryftalline Humour. Book II.

Blood in its Veffels by the ceraceous Matter, from which they becane confpicuous, tho' the ceraceous Matter itfelf could never be made to enter them, (Ruysch Thefair. Anat. 2. p.37.) Dr. Petit alfo made Injections into the Eyes, and afterwards diffected them with the greateft Care; but he could never, by this or any other Method, find the fmalleft Communication or Connexion betwixt the Capfule and the Cryftalline in any Animal, tho' he was at great Pains to difcover it ; he therefore is very pofitive that there is no fuch Thing, (Mem. de l' Acad. amn. 1730). And it is incumbent on thofe who maintain the contrary, to fhew fome fuch Connection, or Attachment, at leaft in fome one Creature or other, before that they can expect we fhould believe them. I know, that Hovi us pretends to fhew us, in his Figures, the injected Veffels of the Cryftalline; but, by a critical Examination of what he fays on that Head, it appears that thefe Veffels do not belong to the Cryftalline, but are either the Veffels of the Capfule, or imaginary ones.
§I3. As to what concerns the Ufe of this Capfule, it is three-fold :

I $/ t$, By being attached to the vitreous $\mathrm{Hu}-$ mour, it keeps the Cryftalline fixed in its Place; whence it is, that when this Membrane is torn by a Stroak on the Eye, as fometimes happens, the Cryftalline drops out of its Capfule,

Chap. XI. Of the Cryfalline Humour. 239
Capfule, and applies itfelf to the pofterior Part of the Uvea, where it does not remain long without becoming opaque, by being foked in the aqueous Humour; for the aqueous Humour differs from the cryftalline Liquor contained in the Capfule, and has a fimilar Effect to that of common Water, in which, if a Cryftalline be fteeped, it foon fwells by imbibing the Water which difranges its Subftance, and renders it opaque.

2 dly , This Capfule feparates the cryftalline from the aqueous Huniour, and of confequence preferves its Tranfparency; which would foon be deftroyed, had the aqueous Humour a free Accefs to it.

3 dly, By its Veffels it furnifhes that cryftalline Liquor which is fent into its Cavity, for nourifhing the Cryftalline, and for moiftening it and preferving its Tranfparency.

That the Cryftalline has a kind of vegetative Life, and draws Nourifhment from this Liquor, is evident, from its having no Communication or Connection with any of the neighbouring Parts, from which it can derive any Nourifhment ; and that this Liquor keeps it moift and tranfparent, is evident from its becoming dry, hard and opaque, when this Liquor is wanting. This is an Accident that fometimes happens in confequence of a violent Inflammation in the inward Parts of the Eye, whereby

240 Of the Cryfalline Humour, Book II.
whereby the Veffels of the Ciliary Circle are deftroyed; for fince thefe Veffels furnifh not only the aqueous Humour, but alfo the Liquor contained in the Capfule of the Cryftalline, the Cryftalline, for Want of this Liquor to moiften and nourifh it, becomes dry, hard and opaque, much as when it is taken out of the Eye and dried; and for the fame Reafon, it alfo adheres to its Capiule. And if, at the fame time, the aqueous Humour is not fupplied in proportion as it is abforbed and diffipated, the Membranes of the Eye will contract, and the Cryftalline will be pufhed forwards, where the Refiftance is leaft, fo as to reft upon the Uvea, to which it foon becomes adherent, as Experience fhews.

C H A P. XII.

Of the Vitreous Humtour.

Sect. 1. HE vitreous Humour is of a middle Confiftence betwixt that of the aqueous and cryfalline Humours. It hath a great Refemblance to the White of an Egg, but is more tranfparent and fomewhat thicker.
thicker. It is the largeft of all the Humours of the Eye, and fills the whole Back-part of the Globe, from the Cryftalline and the Ligamentum Ciliare to the Retina. It adheres pretty clofely to the Edge of the Choroides, where, in going forwards, it forms the Uvea, and feems to receive its Coat from fome of its Fibres reflected inwards at that Place; where alfo fome black Filaments arife, which are fpread upon its Fore-part behind the Ligamentum Ciliare; thefe Filaments are all along adherent to its Membrane: Somie Anatomints have miftaken and defcribed them for the $L i$ gameentum Ciliare itfelf.
\$2. I obferved before, that, in the Middleof its Fore-part, there is a fmall Dimple or Concavity, in which the whole pofterior Convexity of the Cryftalline is received: The rett of its Fore-part round this Concavity forms a convex Anmulus or Ring, in crofling which the Fibres of the Ligamentum Ciliare are inflected, and form an Arch, as they proceed from their Origin in the Ciliary Circle to their Infertion in the Edge of the Cryftalline; for, as thefe Fibres are contiguous to the vitreous Humour in their whole Courfe, they muft neceffarily form an Arch fimilar to that of the Annulus of the vitreous Humour over which they pals.
Vol. I.
H h
By

By this Difpofition the ciliary Ligament is excellently fitted for changing the Situation of the Cryftalline, and removing it to a greater Diftance from the Retina, when we look at near Objects ; for, when it contracts, it will not only draw the Cryftalline forewards, but, by compreffing the Amnulus of the vitreous Humour lying behind it, it will make this Humour rife in the Middle behind the Cryftalline, by which the Cryftalline will be pufhed forewards farther from the Retina. But this will fall to be explained hereafter, in treating of the Change made in our Eyes for enabling us to fee at different Diftances; to which therefore, to avoid Repetitions, I muft refer the Reader.
§ 3. The vitreous Humour, as well as the Cryftalline, feems to confift of folid Parts, which contain an Humour much like the aqueous Humour: But, they are fo delicate and tranfparent, that it is impoffible to diftinguifh them from the Humour they contain; and therefore it is neceffary that fome Experiments be made for demonftrating their Exiftance, and for enabling us to form fome probable Opinion with regard to their Difpofition.

Exper. I. Take the vitrcous Humour of any Animal newly killed, and having laid it upon a Plate, you fhall obferve that it takes
a round flat Figure, and fweats out from its whole Surface a thin clear Serum, much like the aqueous Humour, in fo much that whatever Part of this Humour you fhall touch with your Finger, you fhall always find it wetted with this Serum. As the Difcharge: of this Serum is very flow, this Humour continues a long while without being fenfibly diminifhed; but, if it be pierced with a Pin, or the Point of a Scalpel, in feveral Places, the Serum will run out more abundantly, and the Humour will appear more diminifhed where the Openings are made, than at fome Diftance from them; and if the Perforations are made pretty large, and in fufficient Number, the Humour will foon be evacuated of the greatef Part of the Serum it contained, and will proportionably diminifh in Bulk.
Exper. II. Takeanother of thofe Humours, and prefs it betwixt your Fingers, and you fhall be very fenfible of fomething which breaks within; which can be nothing but fome of its folid Fibres; and if you pierce it in feveral Places, as above, and continue to prefs it gently, the Serum therein contained will be more abundantly expreffed, and what remains will be more folid and firni.

Exper. III. Take a third vitreous Humour, and throw it into Water almoft boiling, and you fhall obferve, that, as it warms, it dimi-
nifhes in Bulk, becomes round, and fomewhat more fold; and if you make the Water boil, it will fail diminish more and more in Bulk, and become more and more folid, fill preferwing its Roundness, till at left it be no bigger than a finall Pea, but exceeding folic.
§4. From the fe Experiments, it feerns reafonable to conclude:

If f. That the Membrane covering the vireonus Humour is porous in all its Parts; for, were it not porous, it would not allow the watify Serum to sweat thro' it, when the vitreous Humour is laid upon a Plate, nor would this Humour diminish fo quickly in Bulk when boiled in Water; for this Dimination made in its Bulk by boiling, muft proceed from the Expulfion of this watry Serum; which therefore muff find a Paffage tho' the Pores of this Membrane.
$2 d l y$, That the vitreous Humour, befides its membranous Côvering, has other Membranes or membranous Fibres, which enter its Compofition, and which; it is probable, are Productions of its membranous Covering, or at leaf are attached to it: Whence it is, that this Humour becomes round and hard, when its Fibres are made to contract by the Boiling-water, and that, when it is preffed by the Fingers, fomething is felt to break within.

Chap. XII. Of the Vitrieous Humour. 24.5
3 dly That thefe Membranes or membranous Fibres ought to form a Number of little Cellules which contain the watry Serum; for, were this Serum contained only in the Interftices betwist the Fibres, without any cellular Work, it would prefently run out, upon opening the Membrane covering the vitreous Humour

4 thly, and lafly, That thefe Cellules communicate with one another by frall Holes or Canals like the Membrana Adipofa; whence it is, that when the membranous Covering of this Humour is pierced, thefe Cellnles empty themfelves fucceffively, and that the watry Serum runs out more abundantly when this Humour is gently fqueezed.

From what hath been faid, I think it is more than probable, that this Part is not a congealed Humour, as the greatef Part of Authors have taught, but that it is compofed of Solids and Fluids, like the other Parts of our Body, and is nourifhed by its own proper Veffels; of which Ruysch, in a Whale, has obferved feveral Branches fpread upon its Tunicle, as well as upon the Tunicle of the Cryftalline.
§ 5. Dr. Briggs fays, that this Humour is about three times denfer than the Aqueous: In which he is greatly miftaken; for, if it is thrown into Water, it floats therem much like Wax,

246 Of the Vitreous Humour. Book II.
Wax, and therefore cannot differ much from the aqueous Humour in Denfity. And this is confirmed by the more accurate Experiments of Dr. Robertson, who, having weighed the Humours of the Eye in a hydroftatical Balance, found, that the fpecific Gravities of the aqueous and vitreous Humours were very nearly equal, and each much the fame w th that of Water; as has been before noticed. And this is further confirmed by the accurate Mr. Haú кsbee, who, in his Phyfico-mechanical Experiments, has given us a Table of the fpecific Gravities, Angles of Obfervation, and Ratio's of Refraction of feveral Fluids, by which it appears, that the Angle of Obfervation and the Ratio of Refraction, in the vitreous Humour of an Oxe's Eye, are the fame as in Water; whence their Denfities muft alfo be equal; for, cateris paribus, the refractive Power of Bodies is as their Denfities; as has been before obferved.

C H A P. XIII.

Of the Ligamentum Ciliare.

THE laft Thing to be confidered in the Structure of our Eyes is the Ligamentum Ciliare. But having, in the preceeding

Chapter,

Chap. XIII. Of the Liganentum Ciliare. 247
Chapter, had occafion to take Notice of the Arch which it forms in paffing over the convex Anmulus of the vitreous Humour, I have nothing further I need to remark, but what. has been before obferved in the general Idea of the Eye, which I fhall not now repeat, but flaall rather take notice of another remarkable Part, the Marfipium Nigrum, which is peculiar to Birds, and is never to be found in other animals.

C H A P. XIV.

Of the Marfupium Nigrum, of Black Purfe, peculiar to Birds.

Sect. i. THIS Part, which is peculiar to Birds, and never to be found in other Animals, takes its name from its Form, being nothing but a Membrane in Form of a Purfe, which arifes from the Entry of the optic Nerve, and paffes thro' the vitreous Humour to its Infertion in that Part of the Edge of the Cryftalline which is next the great Cantbus. Thus it is defcribed by the French Academifts, and, in particular, by Monf. Perrault, in his Mechamique du Ani-

248 Of the Marfupium Nigrum. Book II. maux; from whom I have caufed it to be copied, at Fig. 7. Plat e I. which reprefents the Half of the Globe of an Oftrich's Eye; in which A is the cryftalline Humour, B the optic Nerve, and C the black Purfe attached above to the Cryftalline, and below to the optic Nerve. But, in fome Birds, I have found this Membrane of a rhomboidal Figure, agreable to the Account given of it by Derham, in his Phifico-theology, and Dr. Petit, in the Memoires de l' Academie Royale, ama. 1720.
§ 2. This Membrane is always covered with a black Pigment, which is of a more intenfe Colour than either that of the Uvea, or Choroides; yet, if it be cleaned and wahhed, it appears to be compofed of mufcular Fibres not unlike the Ligamentum Ciliare; as the learned Monf. de la Hire long ago obferved. It is remarkable, that, in proportion as Birds naturally fly more high, and by that Means require a more piercing Sight, this Bag is always more black; for our domeftic or tame Birds, which either do not fly, or do not fly high, fuch as Hens, Geefe, ooc. have this Part not near fo black, as Eagles, and other Birds of Prey.
Mi. Derham calls this Membrane the Pecten, becaufe of its Refemblance to a Comb in fome Animals; and has alfo obferved

Chap. XIV. Of the Marfupium Nigrum. 24.9 its Structure to be very like that of the Ligamentunn Ciliare; and in the Eye of a Magpy, and fome other Birds, which he examined, he tells us, he could plainly perceive it to be mufculous towards the Bottom.

$$
\begin{aligned}
& \text { 31 } 711081 \\
& \text { (v) }
\end{aligned}
$$

 Thimy

 3.1

[253]图

TREATISE

$$
O \mathbb{N} T \mathrm{H}
$$

Eye, the Manner and Phenomena of Vision.

B OOK III.

 of Vi ion.
C H A P. I.

Of the Nature and Properties of Ligbt.
TTAVING confidered the beaxtiful Fabric of the Eye, I may fay; in a curfory, not accurate, ftrict Manner, which, confidering the prodigious Workmanfhip thereof, would have required more Time and Pains than what I could at prefent eafily beftow; and befides, my main Defign being to explain the Manner and chief Phenomena of Vifion, and to lay a Foundation for
for underftanding the Nature of the Difeafes of the Eye, and the proper Means whereby they may be curred; I thought it fufficient to give fuch a general Defcription of this Organ, as might in fome Meafure anfwer thofe Ends. The next Thing which falls in order to be explained, is the Manner of Vifion, and the Office of the feveral Pauts of the Eye conceried therein: But all Vifion being performed by means of Light, it is neceflary that, firf of all, I fhould inquire into the Nature and Properties of this fubtile Medium, without the Knowledge of which no Body can either explain Vifion, or account for its Phenomena, or rightly underftand or remedy the Defects thereof, which happen in the Difeafes of the Eye.
§ I. Firft, Then, Light is not a Quality, as Aristotie, änd á great many Philofophers have taught, but a real Subitance, confifting of material Particles, propagated from the Sun and other luminous Bodies.

This feems to be evident, from thefe Confiderations: ift, Like all other Bodies, it is progreffive, and is not propagated in an Infiant, but fpends about feven or eight Minutes of ari Hour in paffing from the Sun to the Earth. This' was firft obferved by Mr. RoATER, Profefor of Aftronomy to the late King of Firtuce, and then by others, by Means
of the Eclipfes of the Satellites of Fupiter: For thefe Eclipfes, when the Earth is between the Sun and ${ }^{\text {Fupiter, }}$, happen about feven or eight Minutes fooner than they ought to do by the Tables; and when the Earth is beyond the Sun, they happen about feven or eight Minutes later than they ought to do; the Reafon being, That the Light of the Satellites has further to go, in the latter Cafe than in the former, by the Diameter of the Earth's Orbit.
$2 d l y$, It may be ftope or refifted in its Paffage from one Place to another, by the Interpofition of an opaque Body, as other Fluids are ftopt in their Courfes by the Oppofition of any folid Body.
$3 d l y$, Like all other Bodies in Motion, it may be turned oit of its rectilinear Courfe, may have the Determination of its Motion changed by Reflection or Refraction, and may be congregated within a narrower, or fcattered thro' a larger Space; as is evident from reflectirg Specula, and refrasting Burning glaffes.

4 thly, It acts upon the Organs of Animals, and upon all other Bodies as other fluid Subftances do, by ftriking upon them with a determined Force, by communicating a certain Degree of Motion to them, by féparating their component

Parts,

Parts, and puting them in Motion; All theefe Effects we daily fee.

5thly, The Parts of Light are endowed with various original Colours; fome are red, others blue ; others yellow, and fome green, ơc. as Newton has demonftrated, and may be feen by a Prifm applied to the Hole of a darkened Room, thro' which the Sun fhines. Now, fince Colours are the Qualities of Light, having its Rays for their intire and immediate Subject, how can we think thofe Rays Qualities alfo, unlefs one Quality may be the Subject of and fuftain another, which is in effect to call it a Subftance? We fhould not know Bodies for Subftances, were it not for their fenfible Qualities; and the principal of thofe being now found due to Light, we have as good Reafon to believe that to be a Subftance alfo.

6thly, and laftly, It may be confined and fhut up in determined Spaces, like other Fluids, and the Bodies wherein it is thus confined are frequently found to increafe in Weight from the Addition of the material Subftance of which it confifts. This has been proved by the famous Boyle from actual Experiments on Silver, Copper, Tin, Lead, Spelter, Iron, and other Bodies expofed, both naked and clofely fhut up, to Fire; all which were confantly found to receive an Increment of Weight

Weight. (See Boyle's Exper to make. Fire and Flame ponderable). After him the fame Experiments have been repeated by others, both of the French and Eiggijh philofophic Societies, with the fame Succees. And this holds true, not only when Bodies are expofed to our common Fires, but likewife when they are expofed to the Sun's Heat concentred with Burning-glaffes, or with concave Mirrors: For, as is to be feen in the Memoirs of the French Academy, if the Regulus of Antimony be placed at a Due Diftance from the Focus, either of a concave Specalum, or of Tschirnhuse's Cauftic Glafs, it emits Vapours copiounly; notwithftanding which, it becomes heavier than before; which muft proceed, at leaft in part, from the material Subftance of the Light united with that of the calcined Antimony. Nor needs this be thought ftrange or wonderful, feeing Newton has fhewed, in a Multitude of ftriking Inftances, that the changing of grofs Bodies into Light, and Light into grofs Bodies, is very conformable to the Courfe of Nature, which feems delighted with Tranfmutations, (Optics, 2uer. 30.). Now, all the forefaid Properties are the Properties of Bodies, and can belong to nothing but material Subftance; whence we conclude, that Light is a Body.

$$
\$ 2
$$

§ 2. Secondly, The material Particles of which Light confifts, are emitted from the luminous Bodies themfelves, by the powerful Vibrations of their fmallef Parts.

For, if, with the Famous Des Cartes, you fuppofe that all that Space betwixt us and the Sun, and other luminous Bodies is filled with a Materia Subtilis, and that Light confifts in the Prefion or Motion of this Fluid, each Particle next the Sun or luminous Body preffing: or moving the next adjacent one, and that again the next, and fo on, till thofe next our Eyes receive alfo the fame Preflion or Motion; then it would follow, that Light would always bend into the Shadow; and the Shade made by the Interpofition of any opaque Body, betwixt it and the luminous Body, would likewife be illuminated by the Light, which, paffing by the Edges of the Obfacle, would bend inwards. For Preffion or Motion cannot be propagated in a Fluid in right Lines beyond an Obfacle which Stops Part of the Motion, but will bend and fpread every Way into the quiefcent Medium which lies beyond the Ob facle. Thus Gravity tends downwards; but the Preffure of Water arifing from Gravity, tends every way with equal Force, and is propagated as readily, and with as much Force Side-ways, as downwards, and thro' crooked Paflages as thro' Streight ones. The Waves
on the Surface of fagnating Water paffing by the Sides of a broad Obftacle which ftops Part of them, bend afterwards; and dilate themfelves gradually into the quiet Water behind the Obftacle. The Waves, Pulfes, or Vibrations of the Air, wherein founds confift, bend manifeftly, tho not fo much as the Waves of Water; for a Bell, or a Cannons may be heard beyond a Hill, which infércepts the Sight of the founding Body; and Sounds are propagated as readily thro crooked Pipes, as thro ftreight ones: But Light is never known to follow crooked Paffages, nor to bend into the Shadow. For the fixed Stars, by the Interpofition of any of the Planets, ceafe to be feen, and fo do the Parts of the Sun by the Interpoifition of the Moon, Mercury or Venus, becaufe the Eye is then placed in the Shade made by thefe interpofed Bodies; which would not happen, if Light confifted in Preffion or Motion excited in the fluid Body of Des Cartes's fecond Element, or any other Materia Jubtilis; and therefore it mult be al-. lowed, that it confifts of material Particles emitted from luminous Bodies by the powerful Vibrations of their finalleft Parts, and propagated from thence to us, and all round in ftreight Lines, like Lines drawn from the Centre of a Globe to the Circumference.
Vol. I.

K k
§3. A third Property of Light is, that its Particles are extremely finall. For,
s. Firft, They pafs thro' all Bodies that are pervious, fuch as Cryftals, Glaffes, feveral Gems, and almoft all Fluids, but Mercury; and it freely pafes where no other Fluid, how thin foever, can enter; and yet no Eye, however affifted, has been able to difcover or diftinguifh the Parts of the groffert Fluid.

Secondly, If a common Tallow-Candle be lighted, and fet by Night. on the Top of a high Tower, it may be feen all round at the Diftance of half a Mile from the Tower: Wherefore, there is no Place within a Sphere of a Mile Diameter, in which the Eye can be placed, where it will not receive fome Rays of Light from this little Flame. All thofe Rays were before concentred. in the Flame, which, as it is exceeding fmall in refpect of the Sphere that is illuminated, it proves the immenfe -Subtility of the Rays of Light.

Thirdly, Were not the Particles of Matter compofing Light exceeding fmall, they would clafh upon one another, where the Rays crofs, and matually oppofe each other, in their progreffive Motion. But this never happens; for we find, that innumerable different Spheres of Light within our Horizon may be propagated from their feveral luminous Centres without interfering. How many Millions of Candles
and Flambeaux miay we fee fending out their Tides of Light without clafhing upon one another? Which argues both the Sinallnefs of the Parts of Light, and the Largenefs of the void Interftices between the Particles of Air and other Bodies tranfmitting it. If a very fimall Hole be made in the Window-hut of a dark Chamber, wherein no Light enters but by the fimall Hole; and if without the Chamber be fet innumerable laminous Objects of abont the fame Height with the Hole, and at an ordinary Diftance from it, the Light proceeding from every one of thofe Objects will be propagated thro' this fmall Hole without interfering. This will appear, by applying a dark Object within the Chanber directly gppofite to the Hole; for the Light of all thefe luminous Bodies without the Chamber, will, thro' the Hole, be received apon the dark Body the fame Way, as if there had been only one luminous Body. Now, it is impoffible that fo many different Streanis of Light could be tranfmitted thro' fo fan a Hole, were not the Particles of Light extremely finall. In like manner, if a finall Hole be made with a Needle in a Paper, a Spestator lying on his Back, and looking thro' this Hole, may fee all the Objects in the celeftial Hemifphere ; and when he ftands upright, he may fee a fourth Part of the Heavens, together with all
the Bodies that are before him on the Ground; fothat an innumerable Quantity of Rays, either emitted or reflected from Objects, pals thro' this Hole, without interfering or difturbing one another's Motions; which fhews the extreme Subtility of Light, fuch as is not eafy to be compreliended by the utmoft Streatch of the human Mind.

Fourthly, Were not the Particles of Lightextremely fmall, being extremely fwift, (i.c. more than a Million and a half of times fwifter than a Cannon-bullet continuing in its greateft Velocity, (as fhall be prefently fhown) they would have a vaft Force, and thereby would pierce all Kinds of folid Bodies with almoft as great Facility as they do Vacuities; whereas, we fee Light regularly reflected from fome Bodies.
4. Fourthly, Another thing remarkable in Light, is the Swiftnefs of its Motion.

How extremely fwift the Particles of Light are, we may gather from the forementioned Experiment of Mr. Romer, whereby he demonftrates that the Streams of Light pafs from the Sun to our Earth in about eight Minutes, and, according to the Obfervations of Mersennus, a Bullet hot out of a great Gun flies 92 Fathoms in a fecond of Time, (Vid. Merfer. Ballift:) which is equal to $589 \frac{\pi}{2}$ Feet Englifh; and, according to the Computation of Mr. Huzgens, in his Cofmotheoros, it

Chap. F. Properties of Light:

would be 25 . Years in paffing fron the Eanth to the Sun. Now, the Via percurfa being the fame in both, the Velocities will be reciprocally as the Timés, i.e. the Velocity of Ilight will be to that of a Cannon-bullet perfifing in its greateft Swiftnefs, as 25 Years is to 8 Minutes; or as $\mathbf{I}, 642500$ to I ; fo that the Velocity with which the Particles of Light pafs, will be more than a Million and a half of times fwifter than a Cannon-bullet. Moreover, the Diftance betwixt the Sun and us, according to the moft accurate Obferyations of the lateft Aftronomers, being 7a. Millions of Miles, the Light muft run at leaft 145833 Miles in a fecond of Time. But Sound goes but II42 Feet in a fecond ; and there being 5000 Feet in a Mile, the Velocity of Light will exceed the Velocity of Sound in the proportion of about 647342 to I. This is a prodigious anid almoft an incredible Velocity, but the extraordinary Effects of Light and Heat feem to require it all: We fee how powerfully it acts, (being congregated) upon the mof compact folid Bodies, and we never perceive any Diminution of: its Force from which we can fufpect any Abatement of its Velocity.
§ 5. A Fifth Property of Light is, its Reflesibility, or its. Difpofition to be turned back into the fame Medium by any, other Mediumio upon whofe Surface itfalls. And in this it obferves

Serves the fame Law that other Bodies do in their Reflections, viz. the Angle of Reflection is always equal to the Angle of Incidence.

The Truth of this is eftablifhed by Multitudes of Experiments. The following one is very eafy.-Into a very dark Chamber, thro' a fmall Hole made in the Window-fhut, let a Beam of the Sun's Light pafs; and, upon the Floor where this Beam falls, place a Lookingglafs; then fill the Room with Duft, or Smoak, by which means the Beam will become very vifible in its whole Courfe, and you fhall obferve, that this Beam fhall be reffected back into the Air by the Looking-glafs; and that the Angle of Reflection is equal to the Angle of Incidence.
Illustration. Let B (Fig. 8. Plate I.) be the Hole in the Window-hhut; $A B C$ the Beam of the Sun's Light falling on the Look-ing-glafs GCF at C. This Beam fhall, after its. Incidence at C , be reflected back in the Line CD.

From the Looking-glafs at the Point of Incidence C , raife the Perpendicular CE; the Angle ACE, which the incident Beam AC makes with the Perpendicular CE, is the Angle of Incidence; and the Angle DCE, which the reflected Beam CD makes with the fame Perpendicular CE, is the Angle of Reflection. Now, thefe Angles, upon meafuring them,
are always found equal, with whatever Ob . liquity the Rays fall upon the Looking-glafs or any other polifhed reflecting Body.

There are many other ways of meafuring the Angles of Incidence and Reffection; by all which they are conftantly found equal. We have here made chroice of this Way as the moft eafy; our Defign being not to give a Syftem of Optics, but to explain, in the moft fimple Manner, fuch of the fundamental Properties of Light as may be of Ufe to underftand what followeth. The following Method is alfo very fimple, and eafy to be practifed.

Upon the Looking-glafs DE (Plate II. Fig. 9.) place a femicircular Plane FIG, fo as its Centre may be in B, and its Surface may be perpendicular to the Looking-glafs: This done, from the Centre B raife the Perpendicular BI, and make the Arch IC equal to IA. In C, or any other Point of the Line BC produced, place a fmall Object; and in A, or any other Point of the Line BA produced, place the Eye; the Object fhall be feen by the Ray BA reflected by the Lookingglafs at B; becaufe the Angle of Incidence CBI is equal to the Angle of Reflection ABI. But if the Point of the Looking-glafs B be covered, the Eye at A will no more fee the Object at C ; becaufe none of the Rays which
come therefrom can, by the other Parts of the Looking-glafs, be reflected to the Eye at A.
§6. This Reflexibility of Light is a Thing that muft have been pretty well known to many of the Antients; for tho' they had but little Knowledge of Dioptrics, yet no one denies them the Knowledge of Catoptrics, which they cultivated long before Dioptrics were handled. Euclid himfelf wrote a Book on the Elements of Optics anid Catoptrics, which is to be found in Gregory's Edition of Euclid's Works, tho' thereare many learned'Men who will not allow that Eu.cind the Geometer was the Author of this Book, becaufe of fome Blunders that are inr it, which Eucild the Geometer is not thought to have been capable of. Archimedes alfo wrote a Book, as it is faid, de Speculis Ufforeis parabolicis. But it has never yet feen the Light.
\$ 7. There is one Thing relating to the Reflection of Light, which at firt View feems to be contrary to what has been proved of the Angle of Reflection being always equal to the Angle of Incidence; and that is, that there is no reflecting Body, how well foever polifhed, but, befides the Light which it reflects regularly, fcatters every way irregularly a confiderable Quantity of Light; by means of which the Suiface of the beft polifhed Looking-glafs, when
when illuminated in a dark Room by a Beam of the Sun's Light, let in at a Hole in the Window, may be eafily feen in all Pofitions of the Eye.

But this does not at all prove, that in any Cafe the Angles of Incidence and Reflection are of different Magnitudes; for, however well Bodies may feem polifhed, yet their Surfaces are doubtlefs full of Inequalities all over, by which means the Rays of Light, by every fenfible Point of the Surface, are reflected every way ; for, in polifhing Glais with Sand, Putty or Tripoli, it is not to be imagined that thefe Subftances can, by grating and fretting the Glafs, bring ail its leaft Particles to an accurate Polifh, to that all their Surfaces fhall be truly plain and look all the fame Way, fo as, together, to compofe one even continued Surface ; the fmaller the Particles of thofe Subftances are, the fmaller will be the Scratches by which they continually fret and wear away the Glafs, until it be polifhed. But, be they never fo fmall, they can wear away the Glafs no other ways than by gra* ting and fcratching it, and breaking the Protuberances; and therefore polifh it no otherwife than by bringing its Roughnefs to a very fine Grain, fo that the Scratches and Frettings of the Surface become too fmall to be vifible. Now, the Surfaces of all Bodies, being more

> VoL. I. LI
or lefs rough or unequal, may be conceived as made up of an innumerable Quantity of fmall Planes, which, in all fenfible Points, are directed every way ; or they may be conceived as covered with an innumerable Quantity of fmall Hemifpheres, upon which the Light falling, will be reflected every way, fo that the Body will be vifible in all Pofitions of the Eye.

That this is true, we deduce from the Reflection of Light from polifhed Surfaces; for the better the Polifh be, and the fmaller the Grain is with which they are polifned, the more Light will beregularly reflected, and the lefs fcattered. Hence it is, that a well-polifhed Lookingglafs fcatters only a very faint Light when illuminated in a dark Room by a Beam of the Sun's Light, and therefore is but obfcurely feen, except when the Eye is placed in the reflected Beam; and even from the Surface of Bodies which are not at all polifned, the Light is moftly reflected that Way that it would be all reflected were it poffible to bring its Surface to a perfect and accurate Polifh; and therefore the fcattered Light does not at all deftroy what has been above proved of the Equality of the Angles of Incidence and Reflection, but excellently accounts for Bodies being vifible in all Pofitions of the Eye; for, that Bodies might not be invifible in any

Pofition

Pofition of the Eye, it was abfolutely neceffary that their Surfaces fhould be rough and unequal, fo that from every vifible Point the Light might be feattered every way, like Rays drawn from the Centre to the Circumference, and fo might fall upon the Eye in every Pofition or Situation.
§8. A. Sixth Property of Light is its Refrangibility, or Difpofition to be reffacted or turned out of its ftreight Courfe, in paffing obliquely out of one tranfparent Medium , into another of different Denfity.
§ 9. This Refraction of Light, at the Surfaces of tranfparent Bodies, is a Thing that was taken notice of by the Antients; for Aristotle has a Problem conceriing the apparent Curvity of an Oar in Water; and Archimedes, that famous Geometrician, is faid to have written a Book about the Appearance of a Ring or Circle under Water, in which no doubt he confidered the Refraction of the Rays, and the Fallacy of Sight thence arifing. But it does not appear, that the Antients made any Progrefs in Dioptrics, or had any Knowledge of Optic-glaffes; for their moft learned and inquifitive Philofophers have not the leaft Hint of them in their Writings; and doubtlefs, a Contrivance of that univerfal Ufe, beneficial to all old Men, both in reading and writing, could never have been fo concealed,
concealed, as that not the leaft Footfteps thereof fhould remain to Pofterity. The only Relief they had for their decayed Sights, were certain Collyria or Eye-falves; and, when thefe failed them, they were left almoft in the dark for minute and near Objects.

We hear indeed of mighty Stories of ArChimedes burning the Ships of Marcellus at a great Diftance from the Walls of Syracufe. But whether the Matter of Fact be true or falle (as I am very inclinable to believe it falfe,) yet there is no mention of his performing this admirable Effect by Optic-glafes. Perhaps, if there were any fuch thing done at all, it was performed by concave Speculums; for no body denies the Antients the Knowledge of Catoptrics, and Archimedes himfelf is faid to have writ a Book de Speculis Uforiis Parabolicis; as has been before obferved.
\$ Io. And as Optic-glaffes were unknown to the Antients, fo they knew not the exact Laws of Refraction. Alhazen the Arabian, who wrote a large Volume on Optics, about the Year 1100 , in which he makes ufe of the more antient Writers, and efpecially the ten Books of Ptolomy, which are now loft; and after him Vitellio the Polander, who, finding Al hazen's Demonftrations very tedious and intricate, wrote a Book on the fame Subject about 70 Years thereafter; in which
he indeed borrows a great deal from Alhazen, but is more concife in his Demonftrations, which he builds on Principles taken from Appollonius, Theodosius, Menelaus, Theon, Pappus, and Proclus. Both there Authors being ignorant of the exact Laws of Refraction, tell us, that the Angles of Incidence and Refraction are in a given Ratio; and thought they had pretty well proved it by Experiments. But this Proportion being found erroneous in large Angles, in which the Error is moft confpicuous, the Moderns began to examine the Matter more ftrictly. The learned Kepler, among the reft, made feveral Experiments about it, in his Paralipomena ad VitelGIONEM, publifhed in the Year 1604: But he miffed his Aim. Neverthelefs, his Conjectures and Attempts became ufeful to others; and, after the Invention of Telefcopes, the Subject of this Inquiry being thought more valuable than before, was further purfued; and Willebrodus Snellius, after many troublefom Experiments, was at laft fo lucky as to find out the Truth : But fill he did not thoroughly comprehend his own Invention. But of this more hereafter.
§ II. That Light is turned out of its ftreight Courfe, in paffing out of one Medium into another, is a Thing now fo well known to every Body, that I need not wafte much

Time

Time to prove it. It may be gathered from the following eafy Experiment:

Take an empty Veffel, fuch as a Bafon; and all along the Diameter of its Bottom fix little Marks at a fnall Diftance from one another; then, thro' a fmall Hole in the Win-dow-fhut of a dark Chamber, let in a Beam of the Sun's Light; where this Beam falls upon the Floor, place your Bafon fo as its marked Diameter may point towards the Window, and as the Beam of Light may fall on the Mark that is moft diftant from the Window. This done, fill the Bafon with Water, and you fhall obferve, that the Beam which before fell upon the moft diftant Mark, will now, by the refracive Power of the Water, be turned out of its ftreight Courfe, and fall two, three, or more Marks nearer the Centre of the Bafon.

If you make this Water a little muddy, but not fo much as to lofe its :Tranfparency, which may be eafily done by dropping into it a few Drops of Milk, or diffolving therein fome Grains of Saccharum Saturni; and if you raife fome Duft in the Room, or fill it with Smoak, the Beam of Light will become very vifible, both in its Paffage thro' the Air and the Water, and you fhall obferve very diftinctly three Beams; that of Incidence, which, in coming thro' the Hole in the Win-
dow-flut, falls obliquely on the Surface of the Water; that of Reflection from the Surface of the Water, making the Angle of Reflection equal to that of Incidence, and that of Refraction, which, from the Surface of the Water where it is bended, moves in a ftreight Line to the Bottom of the Bafon.

All things remaining the fame, if you place a Bit of plain Mirror at the Bottom of the Bafon wwhere the refracted Beam falls, the Beam will thereby be reflected back again thro' the Water, making the Angle of Reflection equal to that of Incidence; and in paffing out of the Water into the Air, it will be again refracted, or turned out of its ftreight Courfe.
§ I2. Having thus fhewn that light is refracted or turned out of its Way, in paffing obliquely out of one tranfparent Medium into another of different Denfity, I fhall now inquire into the Laws of Refraction by Experiments; in order to which, it may be proper to premife the following Definitions :

Suppofe that BC (Fig. Io. Plate II.) reprefents the Surface of flagnating Water, or any other tranfparent Medium denfer than Air, and that A is the Point of Incidence, in which any Ray coming in the Air from F, in the Line FA, is refracted from its right Courfe AK in the Line AG. About the Centre Λ, with
with the Radius AF, defcribe the Circle BFCKE; erect upon the Surface of the Water, from the Point of Incidence A, the Perpendicular AD , and produce it downwards to E ; and from the Point F, upon the Line AD, let fall the Perpendicular FH ; and from the Point G, to the Line AE, let fall the Perpendicular GI.

Defin. I. The Angle FAD, which the incident Ray FA contains, with the Perpendicular DA, is the Angle of Incidence.

Defin. II. The Line FH is the Sine of the Angle of Incidence FAD.

Defin. III. The Angle GAE, which the refracted Ray AG makes, with the Perpendicular AE, is the Angle of Refraction.

Defin. IV. The Line GI is the Sine of the Angle of Refraction GAE.

Thefe Definitions being underfood, it will be no difficult Matter to find out by Experiments the Laws of Refraction. Thus, if the Refraction out of Air into Glafs be fought, take a rectangular well-polifhed Board about two Feet long and about one Foot broad: To the End of which, at Right-angles, join another rectangular Board of the fame Breadth, but only half a Foot high. This done let a cubical Piece of folid Glafs, whofe Sides being half a Foot fquare, are equal to the Height of the fhort Board, be placed upon the long Board

Board clofs to the other ; then fet this Inftrument upon a Table, or any other horizontal Plane, fo as when the Sun fhines the fhort Board may caft its Shadow upon the other. By obferving carefully the Termination of the Shade, both within the Glafs and without it, you may eafily find how much the Light is refracted in paffing out of Air, into Glais.
Illustration. Let AB (Fig. it. PlateiI.) reprefent the long Board two Feet in Length and about one Foot broad, and let BC reprefent the fhort Board of the fame Breadth joined to it at Right-angles at B ; and fuppole BCDE a Cube of folid Glafs, which, having its Sides half a Foot fquare, is equal in Height with the fhort Board BC.

Now, the Board BC being one Foot broad, and the Glafs Cube only half a Foot, the Light which paffes over the upper End of this Board will in part pafs ftreight forwards towards the other Board, without entering the Glafs, or fuffering any Refraction thereby. But the Light which paffing over the fame End of the Board falls upon the Glafs, will, by the refractive Power of the Glafs, be turned out of its ftreight Courfe. Let therefore HC reprefent the Sun's Light paffing by the upper Eud of the Board C; CF thall reprefent the Courfe of the Light which does not fall upon the Glafs, but moves on in its flreight Courfe with-
VoL. I.

M m
out
out fuffering any Refraction, and F fhall be the Point where the Shadow BF terminates. In like manner CG fhall reprefent the Courfe of the Light which, in falling upon the Glafs at C, is, by its refractive Power, turned out of its ftreight Courfe, and G fhall be the Place where the Shadow BG terminates within the Glafs.

From the Point of Incidence C, raife CI perpendicular to the refracting Surface CD; the Angle HCI, which the incident Ray HC makes with the perpendicular IC, is the Angle of Incidence; and the Angle GCB, which the refracted Ray GC makes with the perpendicular BC, is the Angle of Refraction. But the Angle HCI is equal to the Angle FCB, being Angles at the Vertex; and therefore if the Line CB be confidered as the Radius, FB fhall be the Tangent of the Angle of Incidence HCI , or FCB ; and GB fhall be the Tangent of the Angle of Refraction GCB; and therefore, by meafuring accurately upon a Scale the Lines FB and GB, you fhall have the Proportion thefe Tangents bear to one another. From which, by the Rules of Trigonometry, the Angles themelves, and their Sines, may eafily be found.

If it be required to find the Refraction of Light coming out of Air into Water, or any other
other Fluid, the fame may eafily be found, by fubftituting, in place of the folid cubical Glafs, a thin glafs Veffel of the fame Figure and Magnitude filled with Water, or any other Fluid whofe Refraction is fought.

There are many other Mcthods whereby the Powers of Bodies in refracting of Light are found: But, as the greateft Part of them prefuppofe a Knowledge of Dioptrics, I have made choife of the above Method from the learned Kepler, as moft eafy and fimple; leaving thofe that are acquainted with Dioptrics to confult the optical Writers for other Methods.
§ I 3. Having propofed a Method whereby the refractive Power of Bodies may be found, it now remains that we give you the Laws of Refraction, which are fo many Corolaries drawn from the above Experiments, and confirmed by all other Methods.

Corol. I. The Angles of Incidence and Refraction ly in one and the fame Plane; that is, in the Plane drawn thro' the incident Ray and the Perpendicular at the Point of Incidence.

Corol. 2. Refraction out of a rarer Medizim into a denfer, as out of Air into Water or Glafs, is made towards the Perpendicular, that is, fo that the Angle of Refraction be lefs than the Angle of Incidence ; and, on the contrary,
contrary, Refraction out of a denfer Medium into a rarer, as out of Glafs into Air or Water, is made from the Perpendicular, fo that the Angle of Refraction be greater than the Angle of Incidence.

Corol. 3. If the refracted Ray be returned directly back to the Point of Incidence, it fhall be refracted into the Line before defcribed by the Incident Ray.

Corol. 4. With whatever Obliquity the Light falls upon any refracting Surface, the Sine of the Angle of Incidence is always in a given Proportion to the Sine of the Angle of Refraction: Whence, if that Proportion be known in any one Inclination of the incident Ray, it is known in all Inclinations; and thereby the Refraction in all Cafes of Incidence, on the fame refracting Bo dy, may be determined,

Svelifus was the firf who found that there was a confant Ratio of Refraction; which he proved by manifold Experiments. But he ufed the Secants of the Complements, inftead of the Sines, for expreffing that Ratio, and did not advert that thofe Lines were to one another in the fame Proportion as the Sines ; and therefore did not fully comprehend the Ufefulnefs of his own Difcovery.

What he difcovered on this Head, is as follows: Suppofing the Surface of Water to be

Chap. I. Properties of Light.

AB (fee Fig. 12. Plate II.) and an Object under it at D, which to the Eye at F appeared as it were in the Line FC ; he produced this FC till it met in G, with the Perpendicular DA , to the Surface AB . Then he affirmed that the Image of the Object D appeared at G , and that CD was to CG in a certain given Ratio, as 4 to 3, if the Fluid was Water.

All this is very true, and agrees perfectly with the Law of Refraction now before us: for, from the known Properties of the Triangle $C D G$, the Side $C D$ is to $C G$, as the Sine of the Angle DGC, or AGC, or HCF , to the Sine of CDG, or DCE, which are the Angles of Incidence and Refraction ; yet Snellius never imagined that this was the Ratio of Sines; and therefore, as has been already faid, he did not thoroughly comprehend his own Invention.

Des Cartes, making ufe of this Invention of Svellius, firf applied the Sines, and therefore introduced no fmall Light and Convenience to this Doctrine, and thence explained the Manner of Vifion and the Foci of Glaffes more accurately than had formerly been done : For all optical Writers before him and Snelifus, fuch as Alhazen, VitelII Io, Kepler, do $^{\circ}$. fought for the Laws of Refraction in the Ratio of the Angles of Incidence to the Angles of Refraction; and there-
fore could never come accurately to the Truth, efpecially in large Angles, where the Error is moft remarkable. But the Honour of this Difcovery is by no means to be given to Des Cartes, tho' by many he has been reckoned the firft Author of this Law; for, as is to be feen in Hugenius's Dioptrics, he certainly faw the Manufcript of Svellius, from whom he had this Difcovery, tho' he is not fo candid as to mention his Name.

Corol. 5. All Bodies feem to have their refractive Powers proportional to their Denfities, escepting fo far as they partake more or lefs of fulphureous oily Particles, and thereby have their refractive Power made more or lefs.

This is evident from the Experiments and Obfervations of the incomparable Newton, who, in his admirable Treatife of Optics (Book II. part 3. Prop. 1o.) has given us an exact Table wherein the Proportion of the Sines of Incidence and Refraction of almoft all tranfparent Bodies, the proportional refracting Force of thefe Bodies, (eftimated on the Suppofition that Light is fwifter in Bodies than in vacuo, in the Proportion of the Sines which meafure the Refraction of Bodies; which is certainly true, as fhall be demonftrated afterwards.) The Denfity of the Bodies eftimated by their fpecific Gravity, and the refractive Power of each Body in refpect of its Denfity,
are fet down in different Columns. From which it appears, that the Refractions of a Pfeudo-topaz, a Selenitis, Rock Cryftal, I/land Cryftal, vulgar Glafs, and Glafs of Antimony, which are terreftrial ftony alcalizate Concretes, and Air, which probably arifes from fuch Subftances by Fermentation, tho' thefe be Subftances very different from one another in Denfity, yet they have their refractive Powers almoft in the fame Proportion to one another as their Denfities are.

Again, the Refraction of Camphire, Oilolive, Lintfeed-oil, Spirit of Turpentine and Amber, which are fat, fulphureous, unctuous Bodies, and a Diamond, which probably is an unctuous Subftance coagulated, have their refractive Powers in Proportion to one another as their Denfities, without any confiderable Variation. But the refracive Power of thefe unctuous Subftances, is two or three times greater in refpect of their Denfities than the refractive Powers of the former Snbftances in refrect of theirs.

Water has a refractive Power in a middle Degree between thofe two Sorts of Subftances, and probably is of a middle Nature ; for out of it grow all vegetable and animal Subftances, which confift, as well of fulphureous, fat and inflammable Parts, as of earthy, lean and alcalizate ones.

Salts

Salts and Vitriols have refractive Powers in a middle Degree between thofe of earthy Subftances and Water, and accordingly are compofed of thofe two Sorts of Subftances: For, by Dintillation and Rectification of their Spirits, a great Part of them goes into Water, and a great Part remains behind in the Form of a dry, fixed Earth, capable of Vitrification.

Spirit of Wine has a refractive Power in a middle Degree between thofe of Water and oily Subftances, and accordingly feems to be compofed of both, united by Fermentation; the Water, by means of fome faline Spirits, with which it is impregnated, diffolving the Oil, and volatilizing it by the Action; for Spirit of Wine is inflammable by means of its oily Parts, and, being diftilled often from Salt of Tartar, grows, by every Diftillation, more and more aqueous and phlegmatic ; and Chymifts obferve, that Vegetables, as Lavender, Rue, Marjoram, doc. diftilled per fe, before Fermentation, yield Oils without any burning Spirits ; but, after Fermentation, yield ardent Spirits, without Oils: Which fhews, that their Oil is, by Fermentation, converted into Spirit. They find alfo, that, if Oils be poured in fmall Quantity upon fermenting Vegetables, they diftil over, after Fermentation, in the Form of Spirits.

So then it appears, by the forementioned Table, that all Bodies have their refractive

Powers proportional to their Denfities, or very nearly, excepting fo far as they partake more or lets of fulphureous, oily Particles, and thereby have their refractive Power made greater or. lefs. Whence it feems rational to attribute the refractive Power of all Bodies chiefly, if not wholly, to the fulphureous Parts with which they abound; for it is probable, that all Bodies abound, more or lefs, with Sulphurs; and, as Light, congregated by a burning Glafs, acts moft upon fulphureous Bodies, to turn them into Fire and Flame; fo, fince all Action is mutual, Sulphurs ought to act mof upon Lights For, that the Action between Light and Bodies is mutual, may appear from this Con fideration, that the denfeft Bodies which refract and reflect Light moft ftrongly, grow hotteft in the Summer Sun, by the Action of the refracted and reflected Light.
§ 14 . To this general Law of Light's being refracted more or lefs as the Mediums are of different Denfities, and as they partake more or lefs of fulphureous, oily, and inflammable Parts, I fhall now add, in particular, the Proportion - between the Sines of Incidence and of Refraction, in Glafs, Water, and the Humours of the Eye. Thefe will be fufficient for our prefent Purpofe; and thofe who defire to know what this Proportion is in other Bodies, may

[^1]confult Hauksbee's Experiments, Newt on's Optics, まo.

Light, in paffing out of Air into Glafs, is refracted towards the Perpendicular, fo as the Sine of the Angle of Incidence, is to the Sine of the Angle of Refraction in a greater Proportion than that of 114 to 76 , but lefs than 115 to 76 , that is, nearly as 3 is to 2 ; as Hugenius has obferved: With which alfo Newt on's Obfervations do nearly agree; for he makes the Proportion to be as 3 I is to 20 , which differs not much from that of 3 to 2 ; and therefore this Proportion of 3 to 2 is commonly ufed by dioptrical Writers in explaining the Refractions and Foci of Glafs Lenfes, tho', at the fame time, different Glaffes are fometimes of different Denfities, and confequently do not refract Light equally. But in Phyfical Matters there is feldom need of greater Accuracy.

In going out of Air into Rain-water, Des Cartes has obferved, that the Sine of Incidence is to that of Refraction, as 250 is to 187, that is, nearly as 4 to 3 . This alfo agrees with Newton's Obfervation, who makes the Sine of Incidence to that of Refraction as 529 to 396 .

As to the refractive Powers of the aqueous and vitreous Humours, feeing I have already fhewn that they agree with Water in their fpecific

Chap. I.
 Properties of Light.

fpecific Gravities, and confequently in their Denfities; and feeing it is probable that they are all equally fulphureous or oily, it may reafonably be perfumed, that they alfo agree with Water in their Refractions; and therefore the Sine of Incidence, out of Air into thefe Humours, muft be to the Sine of Refraction, as 4 to 3 . It is not eafy to collect fuch a Quantity of the aqueous Humour as to prove this experimentally: But Mr. Hauksbee, in his Phyfico-Mechanical Experiments, hàs done it with regard to the vitreous Humour of an Ox's Eye; and found that it refracted Light the fame as Water, namely, in the Ratio of 10000 to 7485.3 , which is nearly the fame with that of 4 to 3 .

In paffing out of Air into the Cryfalline of an Ox's Eye the fame Mr. Hau ksbee found the Sines of Incidence and Refraction to be to one another in the Proportion of 10000 to 6832.7 , which is nearly as 19 to I3. And this being fo, the Proportion between thefe Sines, in paffing out of the aqueous Humour into the Cryftalline, will be as II to I0.02126, and in paffing out of the cryftalline into the vitreous Humour, as 10.02126 to iI.

For the Refraction out of Air into the Cryftalline being, according to Mr. HauksBEE'S Experiment, as $10000 \cdot$ to . 6832.7 ; and this
this Refraction being compounded of the Refraction out of 'Air into the aqueous Humour, and the Refraction out of the aqueous $\mathrm{Hu}-$ mour into the Cryftalline, if, for the Sine of Incidence, from the aqueous Humour into the Cryftalline, you put 3 , and for the Sine of Refraction R, we fhall have the following Analogy; $10000: 6832.7:: 4: 3+:: 3: R$, that is $10000: 6832: 7:: I_{2}: 3 \mathrm{R}$, or as 4 to R. Whence $10000 \mathrm{R}=27330.8$, and $R=$ $\frac{2733.8}{10008}=2.73308$; but the Sine of Incidence was 3 ; therefore the Sine of Incidence will be to the Sine of the Refraction, as 3 to 2.73308 , that is as 11 to 10.02129 , when the Light paffes from the aqueous Humour into the Cryftalline, and as 10.02129 to Ir, when it paffes from the Cryftalline into the vitreous Humour.

This is the Law of Refraction in the Cryftalline of an Ox ; and this alfo it would be in the human Cryftalline, were the human Cryftalline of equal Denfity with that of an Ox. But there is good-Reafon to believe, that it is not fo denfe, and confequently that its refracting Power is weaker; for, as has been before obferved, Dr. Robertson has informed us, that, upon weighing the Humours of the Eye in a hydroftatical Balance, he found that the mean fpecific Gravities of five cryftalline Humours of Oxen's Eyes, and three cryftal-
line
line Humours of Sheep's Eyes, were III 34 and IIO33, the fpecific Gravity of Water being roooos; and as the Cryftallinies of Oxen differ fo much in their fpecific Weight from the Cryftallines of Sheep, it is not improbable that thiey differ alfo from the human Cryftalline; and that they do really differ, feems evident from what has been before obferved from Dr. Petit, viz. That the Cryftalline of an Ox falls immediately to the Bottom of Spirit of Vitriol; whereas the human Crytalline floats in it, and does not defcend till next Day, thatits fpecific. Weight has been fufficiently increafed by the Action of the acid Spirit. § 15. It feems therefore to be without Foundation, that a great many learned Men, both Phyficians and Philofophers, have fuppofed that the human Crytalline obferves the fame Law in the Refraction of Light with the Cryftalline of Oxen, and have accordingly built fome of their nicert Calculations on that Suppofition: And as no Author I have met with has examined the Refraction of the human Cryftalline experimentally, and as fuch Experiments may poffibly be attended with fome Difficulties, I fhall here fhey how the Refraction of this Humour may be accurately determined from its fpecific Weight alone, which may,be more eafily found, But, in order to this, I muft premife the following Lemma and Axioms:
§ I6. The perpendicular Motion of Light, which is generated in Refraction by the at tractive Force of tbe refracting Body, is always in a fubduplicate Proportion of that Force; or, wobich is the Same thing, the refracting Force of the Body is as the Square of the perpendicular Motion generated in Refraction.
IlLUSRATION: Let AB (Fig I3. Plate II.) reprefent the refracting plain Surface of any Body, and IC a Ray incident very obliquely upon the Body at C, fo that the Angle ACI may be infinitely little; and let CR be the refracted Ray : From a given Point B , perpendicular to the refracting Surface, erect BR, meeting with the refracted Ray CR, in R; and if CR reprefent the Motion of the refracted Ray, and this Motion be diftinguifhed into the Motions CB and $B R$, whereof $C B$ is parallel to the refracting Surface, and $B R$ perpendicular to it, CB fhall reprefent the Motion of the incident Ray, and BR the perpendicular Motion generated in Refraction by the attractive Power of the Body; as Opticians have explained. I fay then, that this Motion BR is in a fubduplicate Proportion to the refracting Force of the Body; that is, the refracting Force of the Body is as BR^{2}.

Demonstration. BR is an uniform Velocity already compleatly produced by the refracting Force; but this Force does not act inftantaneoufly, but is gradually exerted upon the Ray during its whole Paffage thro' the Space of Activity of the refracting Body: Wherefore, let B and b be two Bodies of different refracting Forces, and let thefe Forces be F and f, and let the perpendicular Motion generated by thefe Forces be M and m, and the Times in which they are generated, or the Times the Rays take to pafs thro' the whole Space of Attraction, T and t; it is obvious, that the Velocities produced will be in a compound Ratio of the Forces and Times; that is, $\mathrm{M}: m:: \mathrm{F} \times \mathrm{T}: f \times t$. But the Times are reciprocally as the Velocities; therefore $\mathrm{M}: m:: \mathrm{F} m: f \mathrm{M}$; whence $\mathrm{F} \times m^{2}$ $\equiv f \times \mathrm{M}^{2}$; which gives this Analogy, $\mathrm{F}: f:: \mathrm{M}^{2}: m^{2}$ or $\sqrt{\mathrm{F}}: \sqrt{f}:: \mathrm{M}: m$, that is, the perpendicular Motion generated in the Refraction by the attractive Force of the Body is always in a fubduplicate Proportion of that Force, or, which is the fame thing, the refracting Force of the Body is as the Square of the perpendicular Motion generated in Refraction.

Axiom. I. Putting I for the Sine of Inciderice, and R for the Sine of Refraction, and. M
for the perpendicular Motion generated by Refraction, M ball be equal to $\sqrt{1^{2}-\mathrm{R}^{2}}$; and M^{2}, or the refracting Force of the Body, Sall be equal to $\mathrm{I}^{2}-\mathrm{R}^{2}$. This will be demonftrated afterwards. (See Corol. towards the End of the 26th Sect. of this Chap.)

Axiom. II. All Bodies, cateris paribus, bave their refracting Forces proportional to their Denfities. This has already been demonftrated from Experiments, and fhall alfo be demonftrated afterwards a priori. (See Sect. 26. of this Chap. towards the End.)

If what has been laid down in the preceeding Lemma and Axioms fhall be admitted, it will not be difficult to fhew, how, from the given Denfity of any Body, its Law of Refraction may be determined, by comparing the Body with fome other fimilar Body, fuch, as Water, whofe Denfity and Refraction are both given.

Thus, if the Refraction of the human Cryftalline be fought; if, for its given Denfity, you put D , and for its unknown refracting Force M^{2}, and for the given Denfity of Water d, and for its given refracting Force m^{2}; by fecond Axiom, d is to m^{2}, as D is to M^{2}; whence $\mathrm{M}^{2}=\frac{\mathrm{Dm}^{2}}{d}$. But, By $A x$. I. $\mathrm{M}^{2}=$

$$
I^{2}-R^{2} \text {, and therefore } I^{2}-R^{2}=\frac{D m^{2}}{d} \text {; and }
$$

if, for the Sine of Refraction R, we put Unity, we fhall have $I^{2}-I=\frac{D m^{2}}{d}$; whence $I^{2}=$ $\frac{\mathrm{D} m^{2}}{d}+\mathrm{I}$, and $\mathrm{I}=\sqrt{\frac{D / m^{2}}{d}+\mathrm{I}}$. But I is the Sine of Incidence from Air into the human Cryftalline, and I the Sine of Refraction; wherefore the Sine of lncidence fhall be to the Sine of Refraction, as the known Quantity $\sqrt{\frac{D m^{2}}{d}+1}$, to I.

Nota, As in folving this Problem we made the Sine of Refraction out of Air into the Cryftalline equal to Unity ; fo, in reducing $\sqrt{\overline{D \times m^{2}+I}+}$ to Numbers, the Sine of Refraction from Air into Water muft in like manner be fuppofed equal to Unity ; whence the Sine of Incidence will be $\frac{4}{3}$, and $m m^{2}$ or $\mathrm{I}^{2}-\mathrm{R}^{2}$ will be $\frac{7}{9}$; which I thought proper to notice, to prevent Miftakes.

Scholiumi. It has been noticed above, that Dr. Robertson, upon weighing the Humours of the Eye in a hydroftatical Ballance, found, that the mean fpecific Gravities of 5 cryftalline Humours of Oxen's Eyes, and of three cry ftalline Humours of Sheep's Eyes, were III34 and IIO33, the fpecific Gravity of Water being 10000 ; and the Mcan of thefe Means being 11083 ; if from this, it
Vol. I.

0 o
fhall
foal be fuppofed, that the Denfity of the himan Cryftalline is to that of Water, as 11083 to 10000 , then $\checkmark \frac{\overline{\mathrm{X} m^{2}}}{d}+\mathrm{I}$, will be equal to 1.3645 ; and therefore the Sine of Incidence from Air into the human Cryftalline, will be to the Sine of Refraction, as 1. 3645 to I , or as 4.0936 to 3 .

Scholium 2. This Refraction out of Air into the Crytalline being compofed of the Refraction out of Air into the aqueous Humour, and the Refraction out of the aqueous Hu mour into the Cryftalline; if, for the Sine of Incidence from the aqueous Humour into the Cryftalline, you put 3, and for the Sine of Refraction R, we foal have 4.0936 to 3 in a compound Proportion of 4 to 3 and 3 to R, that is, as 12 to $3 R$, or as 4 to R; whence $\mathrm{R}=\frac{{ }_{4} \frac{12}{0.966}}{}$. But the Sine of Incidence was 3 , and therefore the Sine of Incidence is to the Sine of Refraction, as 3 to $\frac{-12}{4.0936}$, that is, nearly as 87 to 85 , when the Light paffes out of the aqueous Humour into the Crystalline; and as 85 to 87 , when it paffes from the Cryftalline into the vitreous Humour. This is a furprifingly fall Refraction, and yet it is as certain as any Thing in Euclid, that it can be no greater; and, were our Cryftalline no defer than that of Sheep, its Refraction would be fill l left.
§17. It muft here be obferved, that what I have hitherto faid concerning the Meafures of Refraction, is not accurately true of all the Rays of Light ; for, as will appear afterwards, the Light is not all fimilar and homogeneal, but compofed of different and diffimilar Rays, each of which are endowed with different Properties, fome being more refrangible, and fome lefs refrangible, doc. and therefore the above Proportions of the Sines of Incidence and Refraction, can only be accurately true of thofe Rays which have a middle Degree of Refrangibility, fuch as the Green-making Rays. But the Difference betwist the Refractions of thefe and the other Rays is fo very fmall, that it is not much to be obferved, excepting in great Refractions, when the Incidence is very oblique; and therefore, in moft Cafes, it may be intirely neglected, without any fenfible Error.
§ 18. As to what concerns the Caufe of this Reflection and Refraction of Light, feeing our great Philofopher, the famous Sir Isaac Newton, has clearly demonfrated, by unexceptionable Experiments, that Bodies act upon the Rays of Light at a Diftance, in refracting, reflecting and inflecting them, and that the Rays mutually agitate the Parts of Bodies at a Diftance, for heating them, and putting their Parts into a vibrating Motion, wherein
wherein Heat confifts; we may fafely conclude, that Bodies and Light attract and repel each other mutually; and that the Refraction and Reflection of Light proceeds from the Powers, Virtues or Forces, which Bodies have to attract and repel its Rays at a Diftance: For from fuch Powers, varioufly exercifed in various Circumftances, all the Plonomena of Reflection and Refiaction may eafily be deduced. And this being fo, it is unphilofophical to feek for any other Caufe; for Nature does nothing in vain, and in vain that is done by more Caufes, which can be done by fewer. She is therefore very fimple and uniform, and delights not in fuperfluous Caufes of Things.
§ 19 . This attractive and repulfive Power, by which Bodies and Light act upon one another at a Diftance, is not miraculous or uncommon, but very conformable to the ufual Courle and Tenor of Nature; for it is well known, that Bodies act one upon another by the Attractions of Gravity, Magnetifm, and Electricity: Thefe Attractions reach to very fenfible Diftances, and fo have been obferved by vulgar Eyes; and there are others which reach to fo fmall Diftances, as to have efcaped every body's Obfervation, till Newton difcovered them.

In the $31 /$ 2urry, amnexed to his Optics, this great Philofopher has thown, in a moft elegant and mafterly Manner, how all the chymical Operations are performed by fuch attractive Powers. The Cohefion of the Parts of all homogeneal hard Bodies, is another inftance of this Sort of Attraction; for explaining which Cohefion fome have invented hooked Atoms; which is begging the Queftion, feeing the Parts of thofe Atoms do alfo cohere. Others tell us, that Bodies are glued together by reft, that is, by an occult Quality, or rather by nothing; and others, that they ftick together by confpiring Motions, that is, by relative Reft amongft themfelves. But thefe Caufes are altogether infufficient for explaining Cohefion ; and it is evident, that the Particles attract one another by fome Force, which, in immediate contact, is exceeding ftrong, at fmall Diftances, performs the chymical Operations, and reaches not far from the Particles with any fenfible Effect; for it is impoffible that the Parts or Particles which compofe Bodies can fick together, and that fo firmly as they do, without the Afiftanice of fomething which caufes them to be attracted or prefied towards one another. And this is what I call Attraction, whatever that caule be. The Cohefion of two polifhed Marbles in Vacuo is another Inftance of this Sort of Attraction;

Attraction; as is alfo the fanding of Quickfilver in the Barometer, at the height of 50 , 60 or 70 Inches, or above, whenever it is well purged of Air, and carefully poured in, fo that its Parts be every where contiguous, both to one another, and to the Glafs. The Atmodphere, by its Weight, preffes, the Quickfilver into the Glafs to the height of 29 or 30 Inches, and fome other Agent raifes it higher, not by preffing it into the Glafs, but by making its Parts ftick to the Glafs, and to one another; for, upon any Difcontinuation of Parts made, either by Bubbles, or by fhaking the Glafs, the whole Mercury falls down to the Height of 29 or 30 Inches. And of the fame Kind is that Attraction by which Liquors afcend in capillary Tubes, and betwixt polifhed Plates of Glafs laid together, fo as their Sides be at a very fmall Diftance from one another. And, by the fame Principle, a Spunge fucks in Water, and probably the Glands of the Bodies of Animals, according to their feveral Natures and Difpofitions, fuck in various Juices from the Blood. The Hardnefs and Elafticity of Bodies proceeds alfo from the fame Caufe; and the Drops of every Fluid affect a round Figure, by the mutual Attraction of their Parts; as the Globe of the Earth and Sea affects a round Figure by the mutual Attraction of its Parts by Gravity.

And, as the attractive Power by which Bodies and Light act mutually on each other at a Diftance, is very conformable to the Courfe and Tenor of Nature; fo alfo is their repulfive Power. For, fince Metalls diffolved in Acids attract but a fmall Quantity of the Acid, their attractive Force can reach but to a fimall Diftance from them; and as in Alocbra, where affirmative Quantities vanifh and ceafe, their negative Ones begin; fo in Mechanics, where Attraction ceafes, their a repulfive Virtue ought to fucceed; and that there is fuch a Virtue, follows from the Production of Air and Vapour: The Particles, when they are fhaken off from Bodies by Heat or Fermentation, fo foon as they are beyond the reach of the Attraction of the Body receding from it, and alfo from one another with great Strength, and keeping at a Diftance, fo as fometimes to take up above a Million of Times more Space than they did before, in the Form of a denfe Body. Which vaft Contraction and Expanfion feems unintelligible by feigning the Particles of Air to be fpringy and ramous, or rolled up like Hoops, or by any other Means than a repulfive Power. The Particles of Fluids which do not cohere too ftrongly, and are of fuch a Smallneis as renders them moft fufceptible of thefe Agitations which keep Liquors in a Fluor, are moft caffly feparated
feparated and rarified into Vapour; and, in the Language of the Chymints, they are volatile, rarifying with an eafy Heat and condenfing with Cold. But thofe which are groffer, and fo lefs fufceptible of Agitation, or cohere by a ftronger Attraction, are not leparated without a fironger Heat, or perhaps not without Fermentation ; and thefe laft are the Bodies which Chymifts call fixed, and, being rarified by Fermentation, become true permanent Air: Thofe Particles receding from one another with the greateft Force, and being molt difficultly brought together, which, upon Contact, cohere moft trongly. And, becaufe the Particles of permanent Air are groffer, and arife from deifer Subftances, than thofe of Vapours; hence it is, that true Air is more ponderous than Vapour, and that a moift Atmofphere is lighter than a dry one, Quantity for Quantity.

From the fame repelling , Power it is, that Flies walk upon the Water without wetting their Feet, and that the Object-glaffes of long Telefcopes lie upon one another without touching, and that dry Powders are difficultly made to touch one another fo as to ftick together, unlefs by melting them, or wetting them with Water, which, by exhaling, may bring them together, and that two polifhed Marbles, which by immediate Contact ftick together,
together are difficully brought fo clofe together as to ttick.
§ 20. Thefe Intances of Attraction and Repulfion thew the Courfe and Tenor of Nature, and make it highly probable, that there are yet others of the fame or different Kinds governed by the fame or different Laws ; for Nature is very conformable to herfelf, and very fimple and-uniform: And that there are others, and particularly that Light is refracted, reflected, and inflected, by the attractive and repulive Power of Bodies acting on the Rays at a Diftance, clearly follows from New ton's Experiments and Obfervations: To him therefore I muif refer the Reader for a full Proof of this Point, and fhall here only, by way of Corolary, make the following Obfervation, viz.
\$2I. If Light is reflected and inflected by the repulfive Power of Bodies, it follows, that it may alfo be emitted from luminous fhining Bodies by the fame Canfe; for, as the Particles of fixed denfe Bodies, when they are by Heat or Fermentation fhaken of from thefe Bodies, fo foon as they get beyond the Reach of the Attraciion of the Body, recede from it and from one another with great Force, fo as to conflitute true Permanent elaftic Air: So, in like manner, the Ray of Light, fo foon as it is flaken off from a fhining Body, by the vibrating Motion of the Parts of thie Vol. I.

Body, and gets beyond the Reach of -its Attraction, mult be driven away with exceeding great Velocity by the repelling Force of the mining Body ; for the repelling Force, which is fufficient to turn it back in Reflection, muft be fufficient to emit it.
§ 22. It now remains, that I fhow, how from this attractive and repulfive Power, all the Pheromena of Reflection and Refraction may be deduced.

For this End let ABCD (Fig. I4. Plate II.) be a denfe pellucide Body, and let its Power to attract Light without the Body extend to KL; and let MN and KL be parallel, and at equal Diftance from AB ; it is obvious, that the attractive Force muft continue within the Body till the Ray gets to MN ; by reafon that in all the Places betwixt the Surface of the Body $A B$ and $M N$, there are more Particles drawing the Ray forwards towards MN, than drawing it backwards the contrary Way towards AB ; and therefore the Ray, in its whole Paffage fron KL to MN, muft have its perpendicular Velocity continually accelerated, by the Power of Attraction acting conftantly in Lines perpendicular to the Surface of the attracting Body: The Extent of this Power will therefore be terminated by the two Planes KL and MN, parallel to one another, and to the Surface of the Body AB :

Where this attractive Power vanifhes at KL, there let a repulfive Power begin, and let this repulfive Power extend to the Diftance IH, it is obvious, that the Ray, in its whole Paflage from HI to KL, muft have its perpendicular Velocity more and more retarded by the repulfive Power of the Body acting inceflantly in Lines perpendicular to its Surface AB , and that the Extent of this Power will be terminated by the two Planes HI and KL, parallel to one another and to the Surface $A B$.
§ 23. This being premifed, it will be eafy to underttand how thefe Powers operate in caufing Reflections and Refractions.

Thus, if a Ray of Light OP falls obliquely from Air or Vacuum, upon the Space of Repulfion HIKL, this Ray, at its Incidence at P, will have its perpendicular Motion retarded, and confequently will be perpetually diverted from one Direction into another, by the Oppofition of the repulfive Force, and fo will defcribe a Curve PQR, till it emerges from that Space at R , and then it will proceed in the right Line RS. This will be the Courfe of the Ray, if its progreflive Force be fo weak, or its Incidence fo oblique, or the repulfive Force fo ftrong, as to hinder it from entering the Space of Attraction KLMN; for, if it enters this Space, inftead of being reflected,
reflected, it will be refracted into the denfe Mediuin; and, in reality, fome Part of the incident Light is always reflected and fome refracted atall tranfparent Surfaces: The Caufe of which is, that fome of the Rays are in Fits of eafy Reflection, while others are in Fits of eafy Tranfniffion; as Newton has explained (Optics p. 253.)

If $o p$ be another Ray, having its perpendicular Velocity greater than that of the Ray OP, by being lefs oblique to the Surface of the Body $A B$, or by being in a Fit of eafy Tranfmiffion at its Incidence; this Ray, at its Incidence upon the repelling: Space at p, will alfo have its perpendicular Motion retarded, and confequently will be perpetually diverted from one Direction into another by the Oppofition of the repulfive Force, and fo will defcribe the Curve pq q : But, as the repulfive Force is here fuppofed not fo flrong as to deftroy the perpendicular Velocity of the Ray before it gets to the Space of Attraction at q, this attractive Power which begins at q, muft again accelerate the perpendicular Velocity of the Ray; and of confequence mult bend its Courfe into the Curve $q r$; and when the Ray has got thro' the Space of Attraction to r, it will then proceed in the right Line is with an uniform Velocity.

This is the Manner in whlich the repulfive and attractive Powers of denfe Mediunss operate,
rate, in caufing Reflections and Refractions, when the Light moves from a rare Mediunt, or a Vacuum, into the denfe Medium; but there is a fecond Reflection and Refraction at the farther Surface of the denfe Medium when the Light emerges from the denfe Medium into the rare Medium or a Vacuum.

For Underfanding this, let a Ray of Light be fuppofed to move the contrary Way from s to r; this Ray, during its whole Paffage thro? the Space of Attraction INNKL, being conftantly drawn back by the attractive Power of the Medium acting obliquely upon the Particles, will bend their Courfe into the Curve $r q$: But, if the attractive Force is not fo ftrong as to deftroy the perpendicular Velocity of the Ray, before it gets to the Space of Repulfion at q, this repulfive Power, which begins at q, muft again accelerate the perpendicular Velocity of the Ray, and of confequence mult bend its Courfe into the Curve $q p$; and when the Ray has got thro' the Space of Repulfion to p, it will then proceed in the right Line po.

This will be the Courfe of the Ray, if its progreffive Force be fo ftrong as to overcome the attractive Force of the Body, and get into the Space of Repulfion; but, if the incident Ray have its perpendicular Velocity fo much diminifhed, either by its being in a Fit of ea-
fy Reflection, or by its Obliquity to the Surface of the Body, as not to be able to pals thro' the fpace of Attraction, it will be pulled back into the fame Medium, and, in place of being refracted, it will be reflected.

Thus the Ray op (Fig. 15.) falling more obliquely upon the Space of Attraction at p, will, by the Force of Attraction acting fideways upon its oblique Courfe, be perpetually drawn out of one Direction into another, and be made to defrribe a Curve $p q r$, till it emerges from the Space of Attraction at r, and then it will proceed in the right Line r s. This may be illuftrated by the Action of Gravity; for, if a Stone be thrown upwards from the Point p, in the Direction of the Line op continued, its Courfe will be bent by its Gravity into a Curve pqr, and the Stone will defcend from the highett Point of its Courfe q, by the fame Degrees of Curvity with which it afcended; and if its Gravity be fuppofed to ceafe in all Places below the Line MN, the Stone will go on in the Direction of the laft Particle of the Curve produced, that is, in the right Line r s.
\$24. From what has been faid of the repulfive and attractive Power of Bodies, it follows as a Corollary, that the repulfive Power of a denfe Medium is lefs extended, or elfe weaker than the attractive Power:- For if
the bending of a Ray, by the repulfive Power, was not lefs than the contrary bending made by the attractive Power, the Refraction into a denfe Medium could not be made toward the Perpendicular, and the Refraction into a rare Medium from the Perpendicular, as it always is. And that the repulfive Power of a denfe Medium is lef's extended than the attractive Power, feems manifeft, becaufe the attractive Power continues after the Ray enters the denfe Body: Thus, (in Fig. 14.) the Extent of the repulfive Power is terminated by the two Planes, HI and KL; whereas the attractive Power extends not only from the Plane KL, to the Surface of the Body AB, but alfo from this Surface $A B$ to the Plane MN ; which is double the Extent of the repulfive Power: And it is from this greater Extent of the attractive Power that the Refraction of Bodies is to be explained.
§ 25. Having thus explained the Manner in which the Powers of Repulfion and Attraction operate in caufing Reflections and Refractions, I fhall now proceed to fhew, more particularly, how, from thefe Powers all the Phenomena of Reflection and Refraction may be deduced: But, becaure thefe Powers are but of a fmall Extent, and vanifh at a very fmall Diftance from the Body, the Curve defribed by the Rays, in Reflections and Refractions, muft be very fhort; and therefore, for the more eafy Conception of what is to follow, we may fup-
pofe that the Ray moves in a right Line quite to the Surface of the reflecting or refracting Body, and that it is reffected and refracted, not in a Curve, but all at once at the Point of Inciderice on that Surface.

Taking it then for granted, that Light is reflected from opaque Bodies, and from the firft Surface of tranfparent Bodies, by this re pelling Porver acting upon the Rays in Lines perpendicular to the Suiface of the demfe reflecting Body, it will thence follow, that the Arigle of Incidence is equal to the Angle of Reflection.

For, if we fuppofe a Ray of Light to move in the Direction AC (Piate II. Fig. 16.) towards the reflecting Surface BCD ; and if we fuppofe that Motion to be refolved into two, one AE , parallel to BD , and the other AB , perpendicular to BD , it is manifeft, that of thefe two Motions, the latter only is oppofed to the repelling Force, and of confequence, the Ray, after Reflection, will go on in the parallel Direction with the fame Velocity it did before; and forafmuch as the repelling Force, which oppofes the perpendicular Motion, acts incellantly, it muft, after having deftroyed the Motion of the Ray towards the Body, give it an equal Degree of Motion the contrary Way; that is, throw it back with the fame perpendicular Velocity wherewith it approached. If therefore CD be taken equal to AE ,

Chap. I. Properties of Light.

and from C be raifed the Perpendicular CE , equal and parallel to $\mathrm{AB}_{i} ; \mathrm{CD}$ will exprefs the parallel Motion of the Ray after Reflection, and CE, its perpendicular Motion: And, having compleated the Paralellogram ED, which will in every refpect be equal and fimilar to the Paralellogram BE, and drawn the Diagonal CG, this Diagonal CG will be actually defcribed by the Ray, by virtue of its compound Motion ; and, from the Nature of fimilar Triangles, the Angle of Incidence ACE will be equal to ECG, the Angle of Reflection.

In like manner, taking it for granted that Light is reflected at the further Surface of tranfparent denfe Bodies, by the attractive Power of the Body acting upon the Rays in Lines perpendicular to its Surface, and drawing them back from the rare Medium or Vacuum which lies behind that Surface; in this Cafe alfo the Angle of Incidence will be equal to the Angle of Reflection.

This fcarce needs any Demonftration: For, if we fuppofe $A B D G$ to be a denfe tranfparent Body (See ftill Fig. 16.) and AC a Ray of Light moving towards the further Surface of the Body BCD; it is obvious, that the Effect muit be the fame, whether the Ray: be pufhed back by a repelling Force, before it has got to the Surface BCD; or whether it be pulled back in the fame perpendicular Directi-

Vol. I,
Qq.
on by an attracting Force, after it has paifed that Surface. In both Cafes, the Ray will have its perpendicular Motion deftroyed; after which, by the continued Attion of thefe Powers, it will get an equal Degree of Motion the contrary way; that is, it will be fent back with the fame perpendicular Velocity wherewith it went forward. But it has been already fhown, that this perpendicular retrograde Motion being compounded with the parallel Motion of the Ray, carries the Ray into fuch a Direction as makes the Angle of Incidence equal to the Angle of Reflection; whence we conclude, that, if Light is reflected by the attractive and repulfive Power of Bodies, whether this Reflection be made at the firf or fecond Surface of the Body, the Angle of Incidence will always be equal to the Angle of Reflection, with whatever Obliquity the Ray falls on the reflecting Surface. And this is a fundamental leading Principle whereon a great Part of the Doctrine of Catoptrics is founded.
§ 26. As to the Phonomena of Refraction; there alfo may be eafily deduced from the attractive Power of the denfer Medium acting upon the Rays at Right-angles to the Surface.
For Proof of this, let AC (Plate II. Fig. I7.) bea Ray of Light moving from A to C , and there entring into a denfer Medium, the Surface which feparates the two Mediums being denoted

Chap. I. Propertics of Light.
denoted by the Line HK; the Motion of the Ray, in the Direction AC being refolved, according to the knowri Method, into two, one in the Direction $A D$, and the other in the Direction AB or DC , whereof the former is parallel, and the latter perpendicnar to HK; it is manifert, that, as the Ray eaters into the denfer Mediums at C, its perpendicular Motion muft be accelerated by the Attraction of the Medium, whilft its parallel Motion corttinues the fame. Let then the Lime CG, be taken in the fame Proportion to CD , that the Velocity of the perpendicular Motion after Refraction has to the Velocity thereof before the Refraction; and for as much as the parallel Motion is the fame before and after Refraction, let CE be taken equal to AD or $B C$, and having compleated the parallelogram EG, and drawn the Diagonal CF, the Ray, after Refraction, will dificibe the Line CF in the fame time that it moved from A to C before the Refraction; and forafmuch as GF is equal to AD, LM, that is the Sine of the Angle of Refraction MCL, muft be lefs than AD the Sine of the Angle of Incidence ACD ; coirfequently, by the Attraction of the denfer Medium, the Ray, in pafing into that Medinm, is brought nearer to the Peipendicular; which is one of the-Pheromena of Refraction.

Again, let FC denote the Motion of a Ray in the denfer Medium from F to C and let this

Motion be refolved into two others, one in the Direction FG, or EC, and the other in the Direction FE or GC, the former being Parallel and the latter perpendicular to HK: When the Ray paffes into the rarer Medium at C, the parallel Motion does not fuffer any Change from the Attraction, but the perpendicular Motion is retarded by the attractive Force, which in this Cafe, acts in direct Oppofition to it: Let then CD be to GC as the perpendicular Velocity of the Ray in the rarer Medium to the perpendicular Velocity thereof in the denfer, and let DA be drawn equal and parallel to FG, in order to denote the parallel Motion of the Ray after Refraction; and the Diagonal CA will be the Line defcribed by the Ray after Refraction, in a Space of Time equal to that wherein it defcribed the Line FC beforeRefraction; and forafmuch as $A D$ is equal to GF, it muft be greater then LM; confequently the Angle $A C D$ is greater than FCG; and therefore the Ray, in paffing out of a denfer Medium into a rarer, is, by the Attraction of the denfer Medium, bent from the Perpendicular; which is another of the Phenomend of Refraction.

A third Phenomenor of Refraction is, that with whatever Obliquity the Light falls upon any refracting Surface, the Sine of the Angle of Incidence is always in a given Proportion to the Sine of the Angte of Refraction.

Cháp. I. Properties of Light. 309

This alfo will follow from the attractive Force of the denfer Medium: For proving which, I muft premife the following Lcmna:

L E M M A.

If CD (Plate III. Fig. 18.) be the Surface of the denfer Medium CDEF, and $A B$ the Space thro' wolich the attractive Force extends itfelf fiom A to B; a Ray of Ligbt, in paffung from B to A, will be accelerated in fuch a Manner as that the peripendicular Velocity thercof, at the Point A, will be equal to the Square-root of the Sum of the Square of the perpendicular Velocity of the Ray at its Incidence on the Point B, and of the Squarc of the perpendicular Velocity wobich it woould bave at A, Juppofing it began its Motiont at B from a State of Reft; and this bolds true, not only when the attractive Force is fuppofed to act uniformly at all Diftances, tbro' the whole of the Space $A B$, but allo when it acts differently at different Difances in any given Proportion.
Demonstration. Firff, Let it be fuppofed that the attractive Power acts uniformly at all Diftances thro' the Space of Activity BA; in this, Cafe, the Motion which it generates will, as to its Properties, correfpond with the Motion anfing from Gravity; if therefore the Triangle EGH (Peate III. Fig. Ig.) be taken to denote the Space BA, GH will exprefs the Velocity
locity of a Ray at A, on Suppofition that from a State of Reft it begins its Motion at B ; but, ifat B it has a Velocity exprefed by any right Line as IK, paraltel to GH, let the Triangle be continued on till the Portion IFLK becomes equal to EGH ; and FL will exprefs the Velocity of the Ray at the Point A; and farafmuch as the Triangles EGH, EIK, and EFL, are fimilar, their Areas are to one another as the Squares of the homologous Sides GH, IK, FL ; and feeing the Triangle EFL is equal to the Sum of the two Triangles EGH and EIK (by Reafon of the equal Areas EGH and IKLF,) therefore alfo the Square of FL will be equal to the Sum of the Squares of GH and IK ; whence FL will be equal to the Squateroot of the Sum of the Squares of GH and IK ; that is, the perpendicular Velocity of the Ray at A (Fig. I8.) is equal to the Squareroot of the Sum of the Square of the perpendicular Velocity of the Ray at its Incidence on the Point B, and of the Square of the perpendicular Velocity which it would have at A, on fuppofition that it began its Motion' at B from a State of Reft. But,
$2 d l y$, If the attractive Power acts with different Forces at different Diftances, let the Space of Attraction AB [Fig. 20.] be divided into innumerable little Spaces $\mathrm{B} e$, ei, io, ou, $r y, y: A$, by the parallel plane Surfaces e, i, o, u, y; the Force of Attraction in each of thefe

Spaces being fuppofed equal, and in different Spaces unequal, the Velocities generated in thefe different Spaces will alfo be unequal; wherefore, let a reprefent the Velocity generated in the Space Be, b, the Velocity gencrated in the Space $c i, c$, the Velocity gene rated in the Space $i o, d$, the Velocity generated in the Space ou, f, the Velocity generated in the Space $u y$, and g, the Velocity generated in the Space $y A$: It is obvious, that, if the Ray begins its Motion at B, from a State of Reft, at e it will have the Velocity a, at i, the Velocity $\sqrt{c^{2}+b^{2}}$; at 0 , the Velocity $\sqrt{a^{2}+b^{2}+c^{2}}$; at u, the Velocity $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$; at y, the Velocity $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}+f^{2}}$, and at A, the Velccity $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}+f^{2}+g^{2}}$; and if at B the Ray begins its Motion thro the Space BA, with any given Velocity as x, it will at A have the Velocity $\sqrt{x^{2}+a^{2}+b^{2}+c^{2}+d^{2}+f^{2}+g^{2}}$; But x^{2} is the Square of the perpendicular Velocity of the Ray at its Incidence on the Space of Attraction at B, and $a^{2}+b^{2}$ $+c^{2}+d^{2}+f^{2}+g^{2}$, is the Square of the perpendicular Velocity it would have at A, on fuppofition that it began its Motion at B from a State of Reft; and therefore the perpendicular Velocity of the Ray, at its emerging: out of the Space of Attraction, fhall be al-
ways equal to the Square-root of the Sum of the Square of the perpendicular Velocity of the Ray at its Incidence on the Space of Attraction, and of the Square of the perpendicular Velocity which it would have at its Emergence from that Space, if at its Incidence on that Space its perpendicular Velocity was equal to nothing. And this holds true, as well when the attractive Power acts differently at different Diftances, as when at all Diftances it acts equally.

As a Corollary from this, it follows, that, if a Ray moves the contrary way from a denfe Medium into a rare one, the Ray will be retarded by the Oppofition of the attractive Force, in fuch a Manner as that the perpendicular Velocity therenf, at its emerging out of the Space of Attraction, fhall be always equal to the Square-root of the Difference of the Square of the perpendicular Velocity of the Ray, at its Incidence on that Space, and the Square of the perpendicular Velocity that is deftroyed by the attractive Force of the denfe Medium in paffing thro' that Space.

As this Lemma and Corollary are fundamental Principles, that they may be the better remembered, I fhall exprefs them in the fhort Algebraical Manner. 'For which Purpofe,

Chap. I. Properies of Light. 313
Let the perpendicular Velocity of the Ray, at its Incidence on the Space of Attraction, be \ldots - . . V
The perpendicular Velocity which is generated by the Power of Attraction, when the Ray moves towards the denfe Medium, and which is deftroyed by the fame Power when the Ray moves the contrary way towards the rare Medium, - - v
The Velocity of the Ray, in the denfe Medium, after it has paffed thro' the Space of Attraction, - . - M
The Velocity of the Ray in the rare Medium, after it has paffed thro' the Space of Attraction, — - - - M
Then by the Lemma $\mathrm{M}=\checkmark \sqrt{\mathrm{V}^{2}+v^{2}}$
And by the Corollary $m=\sqrt{\mathrm{V}^{2}-v^{2}}$
This Lemma and Corollary being admitted, it will be eafy to determine the Courfe and Velocity of the refracted Light, and to demonftrate the Phenomerona of Refraction now before us, viz. That the Sine of Incidence is always in a given Proportion to the Sine of Refraction.

Demonstration. Let Mm (Plate III. Fig. 21.) reprefent the refracting plane Surface of any denfe tranfparent Body, and let IC be the Courfe and Velocity

Vol. I.
R r
of a Ray incident very obliquely upon the Body at C, fo that the Angle MCI may be infinitely little; from C raife the Perpendicular CS, and continue it downwards to Q; and let $\mathrm{C} p$ be the perpendicular Velocity generated by the attractive Power of the Body: From the Centre C, with the Radius CM or CI, defcribe the Circle MAS m Q; C m fhall be the parallel motion of the Ray after Refraction, and $\mathrm{C} p$ its perpendicular Motion; having therefore compleated the Parallelogram $p m$, and drawn the diagonal CV, this Line CV fhall reprefent the Courfe and Velocity of the Ray after Refraction.

In like Manner, let the Radius AC reprefent the Courfe and Velocity of any other incident Ray AC; this Motion AC being diftinguifhed into two Motions $A D$ and $A B$ or DC , one of which AD is parallel, and the other DC perpendicular to the refracting Surface; let $\mathrm{C} x$ be taken equal to $\mathrm{C} p$, this Line $\mathrm{C} x$ will alfo denote the perpendicular Motion generated by the Attraction of the denfer $M e$ dium, and the Hypotheneufe $\mathrm{D} x$, being equal to $\sqrt{\mathrm{DC}^{2}+\mathrm{C} x^{2}}$, will meafure the whole perpendicular Velocity of the Ray AC, in the denfer Medium. And forafmuch as the Velocity of the parallel Motion is no way altered by the Attraction, if $\mathrm{C} d$ be taken equal to AD , and CP equal to $\mathrm{D} x$, and the parallelogran Pd
be compleated, it is evident, that the Ray AC, after Refraction, will defcribe the Diagonal Cv, and the Velocity of its Motion will be meafured by that Line.

From the Points N and E , to the Line CQ let fall the Perpendiculars NG and EF, the fe Lines NG and EF are the Sines of the Angles of Refraction VCQ and vCR ; and, by Reafon of the fimilar Triangles CGN and $\mathrm{C} p \mathrm{~V}, \mathrm{NG}: \mathrm{CG}:$ Vp or $\mathrm{MC}: \mathrm{C} p$. Whence $\mathrm{C} p=\frac{\mathrm{MC} \times \mathrm{CG}}{\mathrm{NG}}$; and by reason of the fimilar Triangles CFE and $\mathrm{CPv}, \mathrm{EF}: \mathrm{CF}::$ vP or $A D: C P$; whence $C P=\frac{A D \times C F}{E F}$. If therefore, for $\mathrm{C} p$, the perpendicular Velocity of the Ray CV, you write $\frac{\mathrm{MC} \times \mathrm{CG}}{\mathrm{NG}}$, then, by the foregoing Lemma, CP, the perpendicular Velocity of any other Ray $\overline{\mathrm{C} v}$, will be $\sqrt{\mathrm{CD}^{2}+\frac{\mathrm{MC}^{2} \times \mathrm{CG}}{\mathrm{NG}} ;}$ but $\mathrm{CP}=\frac{\mathrm{AD} \times \mathrm{CF}}{\mathrm{EF}}$; therefore $\frac{A D \times C F}{E F}=\sqrt{C D^{2}+\frac{M C^{2} \times C G^{2}}{N G^{3}}}:$ And, by fquaring thee equals, we have $\frac{\mathrm{AD}^{2} \times C F^{2}}{E F^{2}}=$
$C D^{2}+\frac{M^{2} \times C G^{2}}{N G^{2}}$; to which if the equals AD^{2}, and $\mathrm{MC}^{2}-\mathrm{CD}^{2}$ be added, we thall have $A D^{2}+\frac{A D^{2} \times C F^{2}}{E F^{2}}=M C^{2}+\frac{M C^{2} \times C G^{2}}{N G G^{2}}$
or $\frac{\mathrm{AD}^{2} \times \mathrm{EF}^{2}+\mathrm{AD}^{2} \times \mathrm{CF}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{MC}^{2} \times \mathrm{NG}^{2}+\mathrm{MC}^{2} \times \mathrm{CG}^{2}}{\mathrm{NG}^{2}}$; and, if thefe Equals be divided by the Equals $\mathrm{EF}^{2}+\mathrm{CF}^{2}$ and $\mathrm{NG}^{2}+\mathrm{CG}^{2}$, they will give the Equation $\frac{A D^{2}}{E F^{2}}=\frac{\mathrm{MC}^{2}}{\mathrm{NG}^{2}}$: Whence AD , the Sine of Incidence, is to EF the Sign of Refraction, as MC to NG, that is, in a given Ratio.

In this Demonftration I have only confidered the Light moving from a rarer Medium into a denfer one; but, by the fame Way of reafoning, the Propofition may alfo be proved when the Light moves the contrary Way, from a denfer Medium into a rarer one. The Demonftration Mathematicians will eafily find out, and therefore I fhall not trouble the Reader with it.

Corol. i. The perpendicular Motion generated in Refraction, by the Attraction of the Body, when the Ray moves from the rarer Medium into the denfer, is always equal to the Square-root of the Difference of the Square of the Sine of the Angle of Incidence, and of the Square of the Sise of the Angle of Refraction:

For, if the Ray IC, which is fuppofed parallel to the refracting Surface, be reffacted, at its Incidence on the denfer Mediunn at C, into the Line CV, the Line $m \mathrm{~V}$ or C_{p}^{p} fiadl reprefent the perpendicular Motion gencrated
by the Attraction ; and Cm V fhall be equal to the Angle of Incidence, and $\mathrm{CV} m$ or VCQ fhall be equal to the Angle of Refraction: If therefore V be made the Centre, and a Circle be fuppofed to be drawn with the Radius VC ; CV will be the Sine of the Angle of Incidence, and $\mathrm{C} m$ the Sine of the Angle of Refraction; but, by reafon of the rectangular Triangle $\mathrm{C} m \mathrm{~V}, m \mathrm{~V}$ is equal to $\sqrt{\mathrm{CV}^{2}-\mathrm{C}^{2}}$, that is, the perpendicular Motion generated by the Attraction of the denfer Medium is equal to the Square-root of the Difference of the Square of the Sine of the Angle of Incidence and of the Square of the Sine of the Angle of Refraction.

That this Corollary may be the better remembered, let I and R be put for thefe Sines, and M for the Motion generated by Refraction, and the $\mathbb{F q q u a t i o n ~ w i l l ~ f t a n d ~ t h u s , ~}$ $M=\sqrt{\Gamma^{2}-R^{2}}$.

Corol. 2. When the Ray moves the contrary way, from the denfer Medium into the rarer, as from V to C , the perpendicular Motion, which is deftroyed in Refraction by the Attraction of the denfer Medium, will here alfo be always equal to the Square-root of the Difference of the Square of the Sine of the Angle of Refraction, and of the Square of the Sine of the Angle of Incidence.

For it is obvious, that in this Cafe the attractive Force of the denfer Medium muft de-

318 Of the Nature and Book III.
ftroy, juft as much Motion as it generated when the Ray moved the contrary way; and therefore, putting M for the perpendicular Motion which is deftroyed, Vm or $p \mathrm{C}$; and I for the Sine of Incidence $\mathrm{V} p$ or Cm , and R for the Sine of the Angle of Refraction CV: By reafon of the rectangular Triangle $\mathrm{C} m \mathrm{~V}$, we fhall have $M=\sqrt{\mathrm{R}^{2}-\mathrm{I}^{2}}$

Corol. 3. The Velocity of Light, after Refraction, is to the Velocity of Incidence, as the Sine of Incidence to the Sine of Refraction.

Firft, Let the Light move from a rarer Medium into a denfer one, and let AC reprefent the Courfe and Velocity of any incident Ray AC, and Cv the Courfe and $\mathrm{Ve}-$ locity of the refracted Ray Cv ; by Reafon of the fimilar Triangles CvP and CEF ; vC: $\mathrm{EC}:: v \mathrm{P}: \mathrm{EF}$; but vC is the Velocity of the Light after Refraction, and EC or AC the Yelocity at Incidence, and vP ($=\mathrm{C} d$ or AD) is the Sine of Incidence, and EF the Sign of Refraction; therefore the Velocity, after Refraction, is to the Velocity of Incidence, as the Sine of Incidence to the Sine of Refraction.

Secondly, The fame Corollary holds true, when the Ray moves the contrary way, from the denfer Medium into the rarer. For,

From

From what has been faid, if vC reprefent the Courle and Velocity of any Incident Ray, CA fhall reprefent the Courfe and Velocity of the refracted Ray; but CA is equal to CE, and becaufe of the fimilar Triangles CEF and CvP, CE, or CA, the Velocity of of the refracted Ray, is to vC, the Velocity of the Incident Ray, as EF, the Sine of the Angle of Incidence, is to vP or $\mathrm{C} d$ or AD , the Sine of the Angle of Refraction.

Corol. 4. The Velocity of Light after Refraction is always the fame, with whatever Obliquity the Rays are incident.

This Corollary is a manifeft Confequence of the former one; for, if the Velocity, after Refraction, be called V, the Velocity of Incidence v, the Sine of Incidence I, and the Sine of Refraction R, by laft Corollary, we hhall have $V: v:: I: R$; whence $V=v \frac{I}{R}$; but v being the Velocity of the incident Ray, is a given fixed Quantity; therefore V, the Velocity after Refraction, is as $\frac{I}{R}$, that is, in proportion to the Sines which meafure the Refraction of the Bodies; which is a conftant and invariable Ratio.

A fourth Phenomenon of Refraction is, that the refracting Forces are always proportional to the Denfities of the Bodies, excepting fo
far as they partake more or lefs of fulphureous oily Particles, and thereby have their refractive Powers made more or lefs.

This is fo manifeft a Confequence of Attraction, that it fearce needs any Proof or Illuftration. For the denfer the Body is, it muft have the more attracting Matter in it; and, of confequence, muft refract the Light in that Proportion: This may be illuftrated by the Attraction of Gravity, which always acts in proportion to the Denfity of the gravitating Body. But, when the refracting Body abounds with fulphureous, oily and inflamable Parts, the Attraction, and confequently the Refraction, will be ftronger or weaker in proportion to the Quantity of thefe fulphureous oily Particles ; for, as Light congregated by a Burning-glafs, acts moft upon fulphureous Bodies to turn them into Fire and Flame, fo , fince all Action is mutual, Sulphurs ought to act moft upon Light to attract, refract, and reflect its Rays.

If therefore the Denfities of Bodies are equal, the Powers of Refraction will be as the Quantities of fat fulphureous Particles: If the Quantity of fulphureous Particles are equal, there Powers will be as the Denfities of the Bodies; and, if neither are equal, they will be in a compound Proportion of the Quantities of Sulphur and the Denfities: And as this

Chap. I.

Properties of Light.
is agreeable to Experience, fo it is alfo an obvious Confequence of that Attraction we have fo long dwelt on.
§ 27. By what Law this attractive and repulfive Power operates in refracting and reflecting the Rays of Light, is not fo eafy to determine exactly, for want of fufficient Data, founded on Experiments. This much however is certain, that as Attraction is ftronger in fmall Magnets than in great ones, in proportion to their Bulk, and Gravity is greater in the Surfaces of Small Planets than in thofe of great ones, in proportion to their Bulk; and fmall Bodies are agitated much more by electric Attraction than great ones; fo the Smallirefs of the Rays of Light may contribute very much to the Power of the Agent by which they are refracted and reflected.

It is further certain, that this attractive Power which acts upon Light is infinitely ftronger than the Power of Gravity: This will appear, if we confider that Sir Isaac Newton has demonftrated, that all Bodies attract one another by the Force of Gravity, and that the attractive Forces of two homogeneal Spheres, upon Particles of Matter placed very near their Surfaces, are to each other in proportion as the Diameters of the Spheres; that is to fay, if a refracting Medium be fpherical, Vol. I.

S f
and
and of the fame Denfity as the Earth, the Earth's Force of Attraction near its Surface, will exceed the Medium's Force near its Surface, as much as the Diameter of the Earth exceeds the Diameter of the Medium, or almoft infinitely with refpect to human Conceptions. Yet we obferve, that a Cannon-Ball juft fhot from the Mouth of a Cannon, is fcarce fenfibly deflected towards the Earth by its Attraction, and the leaft Particle of the Ball, if it was feparate from the reft, would be no more deflected than the whole; becaufe Gravity makes Bodies of all Sorts and Sizes defcend with the fame Swiftnefs, by affecting them alike, whether joined or feparated. Therefore a Particle of Light, which, as has been flewn, moves, I may fay, infinitely quicker than a Cannon-ball, would be infinitely lefs bent than the Particle of the Ball by the Attraction of the whole Earth, and ftill infinitely lefs than this laft bending, by the Attraction of the fpherical Medium, which was fhown to be infinitely weaker than that of the Earth. But, in fact, we find it is far otherwife; a Ray of Light is very fenfibly bent or refracted by the Action of the Medium; and therefore it muft be affected by fome other Power of the Medium, which, near its Surface, is infinitely ftronger than the Power of Gravity: And, tho' we are not able to determine the exact

Law of this refractive Power, or the Degrees of its Force at given Diftances from the refracting Surface; yet, fince we find that the Effects of Gravity, which decreafe as the Squares of the Diftances from the Centre increafe, are very fenfible at great Diftances, we may conclude, that the refractive Power of a Medium, which, at its Surface, we find is infinitely ftronger than Gravity, and yet vanifhes at a very fimall Diftance from it, decreafes much quicker, or in a much greater proportion than Gravity does.
§ 28. 7. The Laft Property of Light which I fhall mention confifts in the Diverfity of its Rays; for Light is not all fimilar and homogeneal, but compounded of heterogeneal and diffimilar Rays, fome of which in like Incidences being more reffangible, and others lefs refrangible; and thofe which are moft refrangible are alfo moft reflexible, and according as they differ in Refrangibility and Reflexibility, they are endowed with a Power of exciting in tis Senfations of different Colours.
\$29. This wonderful Property of Light was, in the Year 1666, firft difcovered by the incomparable Newton, and afterwards publifhed in the Pbilofoploic Trandactions, aimo I672, where he alfo gave a fmall Specimen of the Experiments he made for confirming his

Doctrine:

Doctrine ; but, at that Time, there were feveral learned Men who, being prejudiced in favour of other Theories, could not at firft relifh this new Doctrine, nor the Experiments and Reafonings on which it was founded; and therefore formed Objections againft it. All which Newton anfivered fo effectually, that no Place was left for any Doubt or Difficulty, in fo much that the learned Gast on Pard ees himfelf, tho' one of his principal Adverfaries, was fo candid as to acknowledge, in his laft Reply, that he was then intirely fatisfied with his Doctrine. His Words are: Ommino mibi fatisfecit novilima Refponfio a Domino Newтono ad meas inflantias data; novifmus forupulus, qui mibi berebat circa experimestum crucis penitus fuit exemptus; atque aunc plane ex figura ipfius intelligo, quod non intellexeram ante; experimentums peractum cum fuerit ifto modo, nil babeo quod in eo defiderem amplius. And this I here take notice of to the Honour of this learned Philofopher, who hereby has fet us an Example of yielding to Truth, and avciding vain Difputations and endlefs Wranglings, worthy of our Initation.

After that, in the Year 1704, the fame great Man propofed the fame Doctrine more fully, in his beautiful Treatife of Optics, and confirmed it with great Variety of convincing Experiments; the reading of which we muft therefore recommend to all thofe who would
be fully, fatisfied in the Nature of Light and Colours; for, before him, all the World believed that Light was fimple and uniform, without any Difference or Variety in its Parts, and that Colours were nothing elfe than certain Changes or Modifications of Light caufed by Refractions, Reflections and Shaddows; fo that they afcribed the Difference of Colours intirely to the different Textures of Bodies producing different Modifications in the Rays of Light, and not to any original Difference in the Rays themfelves, which they fuppofed perfectly homogeneal and fimilar: But this great Philofoper, to whom we are indebted for almoft every Thing that we know with certainty concerning the Nature of Light and Colours, has demonftrated beyond all Difpute,
§ 30. Imo, That Lights which differ in Colour differ alio in Degrees of Refrangibility.

2do, That the Light of the Sun, notwithftanding its uniform Appearance, confifts of Rays differently refrangible.

3tio, That thofe Rays, which are more refrangible than others, are alfo more reflexible.
$4 t 0$, That, as the Rays of Light differ in Degrees of Refrangibility and Reflexibility, fo they alfo differ in their- Difpofition to exibit
this or that particular Colour ; and that Colours are not Qualifications of Light, derived from Refractions or Reflections of natural Bodies, as was generally believed, but original and connate Properties, which, in divers Rays are divers, fome Rays being difpofed to exhibit a red Colour, and no other, fome a Yellow, and no other, fome a Green, and no other, and fo of the Reft of the prifmatic Colours. Nor are there only Rays proper and particular to the more eminent prifmatic Colours, but even to all their intermediate Gradations.

5to, That the Light of the Sun confifts of Violet-making, Indigo-making, Blue-making, Green-making, Yellow-making, Orange-making, and Red-making Rays; and all thefe are different in their Degrees of Refrangibility and Reflexibility; for the Rays which produce red Colours are leaft refrangible, and thofe that make the Violet the moft, and the reft are more or lefs refrangible as they approach either of thefe Extremes, in the Order we have mentioned them ; that is, Orange is leaft refrangible next to Red, Yellow next to Orange, and fo on: So that to the fame Degree of Refrangibility there ever belongs the fame Colour, and to the fame Colour the fame $\mathrm{De}-$ gree of Refrangibility; and this Analogy betwixt Colours and Refrangibility is very percife
an dftrick, the Rays always either exactly agreeing in both or proportionally differing in both: For,

6to, Every homogeneal Ray, confidered apart, is refracted according to one and the fame Rule; fo that its Sine of Incidence is to its Sine of Refraction in a given Ratio; that is, every different coloured Ray has a different Ratio belonging to it; what thofe Ratio's are, Newton has alfo demonftrated by Experiments: For Inftance, if an heterogeneal white Ray of the Sun emerges out of Glafs into Air, or, which is the fame Thing, if Rays of all Colours be fuppofed to fucceed one another in the fame Line, and their common Sine of Incidence in Glafs be divided into 50 equal Parts, then the Sines of Refraction into Air, of the leaft and moft refrangible Rays, will be 77 and 78 fuch Parts refpectively; and fince every Colour has feveral Degrees, the Sines of Refraction of all the Degrees of Red will have all intermediate Degrees of Magnitude from 77 to $78 \frac{1}{8}$; of all the Degrees of Orange from $77 \frac{1}{8}$ to $77 \frac{1}{5}$; of Yellow from $77 \frac{1}{5}$ to $77 \frac{1}{3}$; of Green, from $77 \frac{1}{3}$ to $77 \frac{1}{2}$; of Blue, from $77 \frac{1}{2}$ to $77 \frac{2}{3}$; of Indigo, from $77 \frac{2}{3}$ to $77 \frac{7}{9}$, and of Violet, from $77 \frac{7}{9}$ to 78 .

Himo, The Species of Colour and Degree of Refrangibility and Reflexibility proper to any particular fort of Rays is not mutable by Refraction, nor by Reflection, from natural
tural Bodies, nor by any other Caufe that has yet been obferved. When any one Sort of Rays hath been well parted from thofe of other Kinds, it hath afterwards obftinately retained its Colour, notwithftanding all Endeavours to change it. Newton refracted it with Prifms, reflected it with Bodies, which in Day-light were of other Colours; intercepted it with the coloured Film of Air interceding two compreffed Plates of Glafs; tranfmitted it thro' coloured Mediums, and thro' Mediums irradiated with other Sorts of Rays, and diverfly terminated it; and yet could never produce any new Colour out of it: It would, by contracting or dilating, become more brifk or faint, and by the Lofs of many Rays, in fome Cafes, become very obfcure and dark; but he could never fee it changed in Specie.

8vo, Yet feeming Tranfmutations of Colours may be made, where there is any Mixture of divers Sorts of Rays; for, in fuch Mixtares, the component Colours appear not, but, by their mutual alloying each other, confitute a middling Colour, and therefore, if by $\mathrm{Re}-$ fraction or any other of the aforefaid Caufes, the difform Rays latent in fuch a Mixture be feparated, there flall emerge Colours different from the Colour of the Compofition: Which Colours are not new generated, but only made apparent

Chap. I.

Properties of Light.
apparent by being parted; for, if they be again intirely mixed and blended together, they will again compofe that Colour which they did before Separation. And, for the fame Reafon, Tranfmutations made by the conveening of divers Colours are not real ; for, when the difform Rays are again fevered, they will exhibit the very fame Colours which they did before they entered the Compofition, as we fee blue and yellow Powders, when finely mixed, appear to the naked Eye green; and yet the Colours of the component Corpufcles are not thereby really tranfinuted, but only blended; for, when viewed with a good Microfcope, they fill appear blue and yellow interfper fedly.

9no, There are therefore two Sorts of Coe lours, the one original and fimple, the other compounded of thefe; and all the Colours in the Univerfe which are made by Light, and depend not on the Power of Imagination, are either the Colours of Homogeneal fimple Light, or compounded of thefe mixed together in certain Proportions. The Colours of fimple homogeneal Light, as we have faid before, are Violet, Indigo, Blue, Green, Yellow, Orange and Red, together with an indefinite Variety of intermediate Gradations: The Colours of compounded Light are different according as it is differently compounded of thefe fimple Rays, mixed in different Proportions; thus, a Vol. I.

T t
Mixture

Mixture of Yellow-making Rays and Bluemaking Rays exhibits a green Colour, and a Mixture of red and yellow Rays makes an orange Colour; and, in general, any Colour the fame in Specie with the primary ones, may be produced by the Compofition of the two Colours next adjacent in the Series of Colours generated by the Prifm, whereof the one is next moft refrangible, and the other next leaft refrangible. But thofe which are fituated at too great a Difance do not fo; Orange and Indigo produce not the intermediate Green, nor Scarlet and Green the intermediate Yellow.

Iomo, But the moft furprifing and wonderful Compofition of Light is that of Whitenefs; there is no one Sort of Rays which alone can exhibit this; it is ever compounded, and, to its Compofition, are requifte all the aforefaid primary Colours, mixed in due Proportion: For, if the Colours made by a Prifm are, by means of a Lens, made to converge, and thereby be again mixed as they were in the Light before it was incident upon the Prifm, a Light will be reproduced intirely and perfeely white, and not at all fenfibly differing from: the direct Light of the Sun, unlefs when the Glaffes are not fufficiently clear; for then they will a little incline the Light to their Colour. Hence therefore it comes to pafs, that White-
nefs is the ufual Colour of Light; for Light is a confufed aggregate of Rays endowed with all Sorts of Colours, as they were promifcuoufly darted from the various Parts of luminous Bodies; and of fuch a confufed aggregate, as I faid, is generated Whitenefs, if there be a due Proportion of the Ingredients; but, if any one predominate, the Light muft incline to that Colour, as it happens in the bine Flame of Brimfone, the yellow Flame of Tallow, the green Flame of Copper opened with Sublimate, the white Flame of Camphire, and the various Colours of the fixed Stars.

And as Whitenefs is produced by mixing the Colours fevered by Prifms, fo it may alfo be produced by mixing tiie coloured Powders which Painters ufe. But it muft be confidered, that all coloured Powders do fupprefs and fop in them a very confiderable Part of the Light by which they are illuminated; for they become coloured, as fhall be thewn below, by reflecting the Light of their own Colour more copioully, and that of all other Colours more fparingly: And yet they do not reflect the Light of their own Colours fo copioully as white Bodies do. If Red-lead, for Inftance, and a white Paper be placed in the red Light of the coloured Speitrum, made in a dark Chamber by the Refraction of a Prifm, the Paper will appear more lucid than the Red-lead,
and therefore reflects the Red-making Rays more copioufly than the Red-lead doth; and, if they be held in the Light of any other Colour, the Light reflected by the Paper will exceed the Light reflected by the Red-lead in a much greater Proportion: And the like happens in Powders of other Colours; and therefore, by mixing fuch Powders, we are not to expect a ftrong and full White, but fome dufky obfcure one, fuch as might arife from a Misture of Light and Darknefs, or from White and Black, that is, a Grey or Dun, or Ruffetbrown (for as Whitenefs arifes from a copious Reflection of all Sorts of Rays, as they were promifcuoufly darted from the luminous Body, fo Blacknefs arifes from a Suffocation and Suppreffion of the incident Light, which being ftopt in the black Body is not reflected) and fuch dartk Whites may be produced by mixing coloured Powders. Thus one Part of Miniunn and 5 Parts of viride . Aris compofe a dun Colour, like that of a Moufe; for thefe two Colours were feverally fo compounded of others, that in both together were a Mixture of all Colours: And lefs Red-lead muft be ufed than viride Wris, becaufe of the Fullnefs of its Colour ; but the Experiment will fucceed better, if to Orpiment be adaled a little full bright Purple ufed by Painters, until the Or* piment ceafe to be yellow, and become of a
pale Red, and that Red be diluted by adding a little viride 压ris, and a little more blue Biife than viride 尼ris, until it becomes of fuch a grey or pale White as verges to no one of the Colours more than to another: For thus. it becomes of a Colour equal in Whitenefs to that of Afhes, or Wood newly cut, or of a Man's Skin ; . but to affign the Proportions of thefe Ingredients accurately may be difficult, by Reafon of the different Goodnefs of Powders of the fame Kind.

Now, confidering that thefe grey and dun Colours may be alfo produced by mixing Whites and Blacks, and by confequence differ from perfect Whites, not in Species of Colour, but only in Degree of Luminoufnefs, it is manifeft, that there is nothing more requifite to make them perfectly White than to increafe their Light fufficiently: And, on the contrary, if by increafing their Light they can be brought to perfect Whitenefs, it will thence alfo follow, that they are of the fame Species of Colour with the beft Whites; and this has been tried as follows :

Rub fome of the above mentioned grey Powder thickly upon the Floor, where the Sun fhines upon it; and by it, in the Shadow, lay a Piece of white Paper of the fame Bignefs; at the Diftance of about 12 Feet, the Powder will appear intenfely white, fo as even to tranfcend the Paper itfelf in Whitenefs, efpecially
efpecially if the Paper be a little fhaded from the Light of the Clouds; and then the Paper, compared with the Powder, will appear of fuch a grey Colour as the Powder had done before; but, by increafing or diminifhing the Lights wherewith the Paper and Powder are illuminated, they may be brought to that Proportion that they fhall both appear exactly alike in Whitenefs, in fo much that being both good Whites, no Body can fay which is beft, nor wherein their Colours differ. Now, if we confider that this White of the Powder in the Sua-fhine is compounded of the Colours which the component Powders have in the fame Sun-hine, we muft acknowledge that perfect Whitenefs is compounded of Colours.

I Imo, As Whitenefs is produced by a copious Reflection of Rays of ail Sorts of Colours, when there is a due Proportion in the Mixture, as in the direct Light of the Surr ; fo, on the contrary, Blacknels is produced by a Suffocation and Abforption of the incident Light,' which being fopped and fuppreffed in the black Body, is not reflected outward, but enters the Body and is often reflected and refracted within the Body, until it be ftified and loft. Whence it is cafy to fee, why all Shadows, even thofe caft upon white Paper, or other white Bodies, are always more or lefs
black, according as lefs or more Light is reflected upon them from other Bodies about; for Shadow and Blacknefs are near a-kin, and Shadow, we know, is buta Privation of Light; Blacknels therefore feems to proceed from the want of Rays reflected from the black Body to the Eye ; but the Bodies we call black, as Marble, Jet, boc are not perfectly fo; for, if they were, we fhould not fee them, at all.

From this alfo we may fee, why, of all Bodies, black ones are foonet and moft ftrongly heated, and take fire fooneft; whereas, of all Bodies, white ones are lateft and leaft heated, and are longen in taking fire; for, by the frequent, Reflections and Refractions which the Light fuffers within the black Body, its Parts are foon put into thofe vibratory Motions wherein Heat and Fire confift; but by one Act of Reflection white Bodies fend back all the Light incident upon them, and therefore are not fo quickly nor fo flrongly heated, and are much longer in taking fire.

Agreeable to this Doctrine, we find, that black Cloth dries much fooner than white; black garden Walls are hotter than white ones; the Fire ftruck from a Flint by Steel prefently kindles, a black half burnt Rag, but does not at all kindle a white Rag; black Charcoal burns prefently. whereas the fame Wood, before it is reduced
to Charcoal, does not kindle but witl a ftronger Fire; Gun-powder eafily takes Fire, by reafon of the black Charcoal that enters its Compofition; whereas, without the Charcoal, it would not burn fo eafily; a Candle whofe Wick is burnt to Blacknefs is eafily lighted after it has been put out, but a Candle that has never been lighted does not take Fire fo foon. The famous Mir. Boyle made a concave Speculum of black Marble, but he could not, in a long Time, fet a Piece of Wood on fire with it ; but white Bodies reflect almoft all the Light incident upon them ; and therefore concave Specula made of white Metals burn vehemently in their Focus, where the Rays are congregated; but, if fuch a Speculum be blacked over with the Smoak of a Lamp, it will not then reflect any fenfible Heat or Light to the Focus, nor will it rarify the Mercury in the Thermometer when placed there; but the Speculum itfelf will foon be heated by theRays that are ftopt and fiffed at its Surface. It is for this Reafon, that black Earths, like other black Bodies, are much hotter than white Earths ; but white Earths, by reflecting moft of the incident Light into the Air, heats it extremely ; whence the Ifland Ormus is fo vehemently hot from the ftrong Reflection that is made by its white Mountains.

Thefe Things being confidered, the Manner how Colours are produced by the Prifm is evident ; for of the Rays conflituting the incident Light, fince thofe which differ in Colour, proportionally differ in Refrangibility, they, by their unequal Refractions, muft be fevered and difeeried into an oblong Form, in an orderly Succeffion, from the leaft refracted Scarlet to the moft refracted Violet: And for the fame Reafon it is, that Objects, when looked upon thro' a Prifm, appear coloured; for the difform Rays, by their unequal Refractions, are made to diverge towards feveral Parts of the Retina, and there exprefs the Images of Things coloured, as in the former Cafe they did the Sun's Image upon a Wall. And by this Inequality of Refractions they become not only coloured but alfo very confufed and indiftinct.

Why the Colours of the Rain-bow appear in falling Drops of Rain is alfo from hence evident; for thofe Drops which refract the Rays, diffofed to appear Purple, in greateft Quantity to the Spectator's Eye, refract the Rays of other Sorts fo much lefs, as to make them paifs befide it; and fuch are the Drops on the Infide of the primary Bow, and on the outfide of the fecundary or exterior one. And thofe Drops which refract in greateft Plenty the Rays apt to appear red toward the Spectator's Eye, refract thofe of other Sorts fo much
VoL.I.

Uu
more
more as to make them pafs befide it ; and fuch are the Drops on the exterior Part of the primary Bow, and the interior Part of the fecundary Bow.

The odd Pbenomena of an Infufion of Lignum Nephriticum, Leaf-gold, Fragments of coloured Glafs, the Feathers of a Dove's Neck, and a Peacock's Tail, and fome other tranfparently coloured Bodies, appearing, in one Pofition, of one Colour, and of another in another, are, on thefe Grounds, no longer Riddles; for thofe are Subftances apt to reflect one Sort of Light and tranfinit another; as may be feen in a dark Room by illuminating them with fimilar or uncompounded Light; for then they appear of that Colour only with which they are illuminated; but yet in one Pofition more vivid and luminous than in another, accordingly as they are difpofed more or lefs to reflect or tranfmit the incident Colour.

From hence alfo is manifeft, the Reafon of an unexpected Experiment which Mr. Hook, in his Micrographia, tells us, he made with two Wedge-like tranfparent Veffels, filled the one with a red, the other with a blue Liquor, namely, that tho' they were feverally tranfparent enough, yet, both together, became opaque; for, if one tranfmitted only red, and the other only blue, no Rays could pafs thro' both.

Many more Inftances of this Nature might be added; but I fhall conclude with this gencral one, namely, that the Colours of all natural Bodies have no other Origin than that they are variounly qualified to reflect one Sort of Light in greater Plenty than another. This hath been experimented in a dark Room by illuminating thofe Bodies with uncompounded Light of divers Colours ; for, by that means, any Body may be made to appear of any Colour; they have there no appropriate Colour, but ever appear of the Colour of the Light caft upon them ; but yet with this Difference, that they are moft brifk and vivid in the Lights of their own Day-light Colour: Miniumn afpeareth there of any Colour indifferently with which it is illuftrated, but yet mof luminous in red; and fo Bife appeareth indifferently of any Colour with which it is illuftrated, but yet moft luminous in blue; and therefore Mi nium reflecteth Rays of any Colour, but moft copiouly thofe endowed with red; and confequently, when illufrated with Day-light, that is, with all Sorts of Rays promifcuoully blended, thofe qualified with red fhall abound moft in the reflected Light, and by their Prevalence caufe it to appear of that Colour. And, for the fame Reafon, Bife refiecting blue moft.copioufly fhall appear blue, by the Excefs of thofe Rays in its reflected Light; and the like
of other Bodies. And that this is the intire and adequate Caufe of their Colour, is manifeft; becaufe they have no Power to change or alter the Colours of any Sort of Rays incident a-part, but put on all Colours indifferently with which they are enlightened; and therefore, were there no Diverfity of Rays, there could be no Diverfity of Colours, and all the Bodies in the World would be of one fimilar Colour.

This is a Sketch of what Newtow hath difcovered on this Head; for a full Domonftration whereof I mult refer the Reader to that furprifingly beautiful Treatife of Optics wrote by himfelf; for it is impoffible to feparate the Parts of this Work from one another, without Difadvantage to them, or to fum them up in lefs Roon, without lofing niany Things both ufeful and entertaining. That great Philofopher having, in his Principia, fhewn how far Numbers and Geometry would go in Natural Philofophy, has, in his Optics, manifefted to the World to what furprifing Height even vulgar Experiments, duly managed and carefully examined, in fuch Hands, may advance it; for, to the Honour of this great Man, it is to be obferved, that he was led to all his Difcoveries in Optics, as he himfelf telis us, by obferving the oblong Form of the Sun's coloured Image caft upon the

Wall of a dark Room, by means of a Prifm placed at a Hole in the Window-hhut. This was an Experiment at that Time well known to all Naturalifts; but it was referved to Newton to difcover, and, by his fuperior Skill in Geometry, to demonftrate, againft all his Adverfaries, that this Image, on the old Principle of an equal Refraction of all the Rays, ought to be circular; and confequently, that this oblong Form proceeded from a different Refrangibility of the Rays whereof the Sun's Beam confifted, by Meanis of which Refrangibility the Rays of different Colours were feparated from each other, and exhibited a Part in the oblong coloured Spectrum: And, having made this fundamental Difcovery, he alfo confirmed it by Experiments, and was thereby led to contrive many other Experiments by which he has opened the whole Myftery of Light and Colours; as may be feen in the aforefaid Treatife of Optics.
§ 31. This Difference of Refrangibility in the Particles of Light argues a Difference likewife in their Magnitude; for, fince one and the fame Caufe, viz. the Attraction of the Glafs, acing upon them all with equal Force, and under like Circumftances, produces unequal changes in the Directions of their Motions, it muft needs be that they move with unequal Forces; and confequently, that their Quantities

Quantities of Motion are unequal; which Inequality of Motion can arife from nothing elfe but the different Size of the Particles, in cafe they all move equally fivift, and are all equally folid, as is generally fuppofed: Confequently, the Particles of Light, which differ as to Colour, differ alfo in Magnitude; thore of Violet being fmalleft, and the Particles of other Colours increafing continually one above another, as they are more and more removed from the Violet, and approach nearer to the Red, whofe Particles are the largeft of all.
32. And here it will not be improper to obferve, that the red Particles, being of all the largeft, they muft, on that Account, act with the greatef Force, and excite the ftrongef Vibrations in the nervous Coat of the Eye; which may be one Reafon why Reds produce a ftrong Senfation, and are found to be more offenfive to the Eyes than any other Colour whatever; and the violet Particles being the leaft, muft, on that Account, excite the weakeft Vibrations, and confequently produce only a weak, faint, dark Colour; but the green Particles, being of a Size equally diftant from both thefe extremes, muft, by exciting Vibrations of a middling Strength, produce a Colour fufficiently frong and bright, while at the fame time
it does not offend the Eye by its too great Strength and Vivacity: And this is the Reafon why green Colours have in all Times been efteemed ufeful to comfort, ftrengthen and preferve the Sight.
\$33. This Doctrine receives ftill fome further Confirmation from a remarkable Experiment which I find taken notice of by the famous Monf. de la Hire, in his Differtation fur les differens Accidens de la Vue, publifhed in the Year 1694; the Experiment is as follows:

After having looked a fhort while at the Sun, fhut your Eyes, and you fhall, for fome time after they have been fhut, ftill continue to fee his Image, whofe Brightnefs diminifhes little by little, and puts on fucceffively Colours lefs and lefs bright and lively; for, immediately after your Eyes have been fhut, the Image appears of a red Colour, but, in keeping the Eye ftill fhut, it appears yellow, then green, afterwards blue, and at laft violet; but if the Eyes are kept open, thefe Colours will appear different, becaufe, compared with others which are feen at the fame time in Bodies that furround them, and becaufe of their Mixture with them, as is eafy to underftand; for it is certain that what appears white, for Inftance, when the Ground is black, may appear black or brown when the Ground is white; and thefe Colours which appear yel-
low or blue, when the Eyes are fhut, will appear green, if one looks at a blue or yellow Body; for Experience teaches us, that a Mixture of thofe two Colours forms a Green.

Now, thefe apparent Colours which are feen after having looked at the Sun, can proceed from nothing but the too violent Agitation excited in the Retina, by the Rays of Light, and their Continuance for fome time after the Eyes are fhut, can flow from nothing, but that thefe Tremors or Agitations are of a lafting Nature and do not prefently perifh, but continue for fome time, ftill growing weaker and weaker, till they at laft vanifh: And, fince the Colours connefted to thefe Tremors or Vibrations are fucceffively changed, as the Vibrations grow weaker, from Red to Yellow, from Yellow to Green, from Green to Blue, and from Blue to Violet, in the Prifmatic order; it follows that the Senfation of Red proceeds from a ftrong Agitation excited in the Retina, that of Yeilow from a weaker, and that of Green, Blue and Violet from others fill weaker and weaker; and confequently, that the Red-making Rays are the largeft, the Violet-making the leaft, and the feveral intermediate Sorts of Rays of feveral intermediate Degrees of Magnitude; as has been above explained.
§34. As this Doctrine is agreeable to Reafon, fo it alfo feems to have been the Opinion of our great Philofopher. His Words are: " Nothing is more requifite for produ"cing all the Variety of Colours, and De" grees of Refrangibility, than that the Rays " of Light be Bodies of different Sizes, the " leaft of which may make Violet, the weakeit " and darkeft of the Colours, and be more " eafily diverted by refracting Surfaces from " their right Courfe; and the reft, as they are " bigger and bigger, may make the ftronger " "and more lucid Colours, Blue, Green, Yellow " and Red, and be more and more difficultly "6 diverted" (Newton Optic. थuer. 29.) § 35 . To this it has been lately objected, by the ingenious Mr. Melvile, in the Edinburgh Efays Phyfical and Literary, vol.ii. that, " if there be any Analogy between "Gravity and the refractive Power, it will " produce equal perpendicular Velocities in all " Particles, whatever their Magnitude or " Denfity be, and fo all Sorts of Rays would " be ftill equally refrangible; whence he thinks " it a more probable Opinion, that the differ" ently coloured Rays are propagated with " different Volocities from the luminous " Body, theRed with the greateft, Violet with " the leaft, and the intermediate Colours VoL. I. X 8 "... "6 with
"with intermediate Degrees of Velocity." But the Anfwer to this is eafy : For,

Firft, Tho' there is fome Analogy between Gravity and this refractive Power, both being the Effects of Attraction, yet the Laws by which thefe Attractions are governed, are fo widely different, that there cannot be the leaft Doubt, with any body who fhall confider what has been already faid of thefe Laws, that tho' Gravity produces perpendicular Velocities, which to Senfe are equal in all Bodies, whatever their Magnitude or Denfity be; yet, if the Rays of Light be Bodies of different Sizes, the aitractive Power of the refracting Medium, which, near its Surface, is infinitely fronger than Gravity, and yet vanifhes at a very fmall Diftance from it, muft in them produce different perpendicular Velocities, ftill the greater Velocity the fmaller the Particle be. And as this is a fufficient Anfwer to the Objection formed againft Newton's Doctrine, fo, on the other Hand, the Hypothefis which our Author himfelf embraces feems very improbable: For,

Secondly, It is a very difficult Matter to conceive how the Particies of Light, fuppofing them to be of the fame Magnitude and Denfity, fhould be cmitted with different Velocities from the hining Body: They are fuppoied to be emitted from the fhining Body
by the vibrating Motion of the Parts of the Body, and fo foon as they get beyond the Reach of its Attraction, they are fuppofed to be driven forwards with exceeding great Velocity by the repelling Force of the Boaly: But thefe Caufes acting uniformly, ought to produce equal Velocities in all the Rays; nor does it feem poffible to affign any other Caufe whatever that fhould make them move with different Velocities; for, to fuppofe that the fame Caufe acting uniformly hould produce different Effects on fimilar Subjects, in fimilar Circumftances, to me feems not much lefs abfurd, than that any thing fhould happen without any Caufe at all.

Thirdly, Another Objection to this Hypothefis arifes from what our Author himfelf propofes for examining his' Theory. His Words are: "The Time which the extreme Violet "takes to move thro' any Space muft be to " that which the Red takes as 78 to 77. If "Fupiter be fuppofed in a quadrate Afpect ", with the Sun, in which Cafe the Eclipfes of " his Satellites are moft commodioully obfer" ved, his Diftance from the Earth being nearly. " equal to his Diftance from the Sun, Light "s takes about 4I Minutes of Time in pafing "from him to the Earth; therefore the " laft Violet Light which a Satellite reffects, " before its total Immerfion in the Shadow
" of Jupiter, ought to continue to effect the "Eye for a 77 th Part of 4 T " or 32 ", after " the Red, reflected at the fame time, is " gone; that is, a Satellite, feen from the "Earth ought to change its Colour above half " a Minute before its total Immerfion, from " white to a livid greenifh Colour, thence " into Blue, and, at laft, vanifh in Violet: " And the fame Phenomenon fhould take Place " in the time of Emerfion, by a contrary "Succeffion of Colours, beginning with Red " and ending in White. "Then he adds, " "If this Phenomenon fhould be actually per"ceived by Aftronomers, we fhall have a " fufficient direct Proof of the different Ve" locities of the coloured Rays; for I fee not " (fays he) to what other Caufe the Phano" menon could be rationally afrribed; if it be " not, we may conclude, that Rays of all
"Colours are emitted and reflected with one " common Velocity."
So far this ingenious Gentleman, with whom I agree in every Particular ; but muft be forgiven to obferve, that the Silence of all Aftronomers, with regard to this Phanomenon, makes it evident, that it does not take place; for fuch a remarkable Phenomenon could not have mift been obferved by them ; and, if it had been obferved, they no doubt, would have publifhed it to the World when writing on that Subject;

Chap. I. Properties of Ligbt.
Subject: Since therefore this Pbenomenon does not take place, we may from thence fafely conclude, that Rays of all Colours are emitted and reflected with one common Velocity, and that all the Variety of Colours, and Degrees of Refrangibility, proceed from nothing elfe but the different Sizes of the Particles of Light; agreeable to the Newtonian Doctrine above explained.

C H A P. II.

Of the Mariner of Vifion, and the Ufe of the Several Humours of the Eye.

Sect. I. T-AVING, as breifly as was poffible explained fuch of the fundamental Properties of Light as may be of Ufe for underftanding the Manner and manifold Pbenomena of Vifion, the Order propofed now leads us to confider how Vifion is performed, to inquire into the Ufe of the feveral Parts of the Eye concerned therein, and to account for its various Conformations in various Animals.

For explaining Vifion, many Hypothefes have been invented by Philofophers. The Stoics imagined, that certain vifual Rays went from the Brain thro' the optic Nerve and Eye, and from thence to the Object, and there juft like a blind Man's Staff, fell out the Figure, Colour and Dimenfion of the Object. Chrysippus was one of the great Patrons and Propagators of this Hypothefis; but others of the fame Seet thought, that nothing Material, fuch as vifual Rays or Spirits went out of the Eye; but, which is yet more grofs and ridiculous, only a perceptive Power or Faculty, like what the Vulgar imagine to proceed from the Loadftone, by which they fuppofe it acts upon Iron at a Diftance.

The Pythagoreans believed, that there went fome vifual Species out of the Eye to the Object; which, like a Ball thrown againft a Wall, were immediately reflected back again from thence to the Eye, and fo produced Vifion.

Epicurus, Lucretius, and Leucippus, afferted, that the Senfe of Vifion was produced by a continual fucceffive Emanation of material Images, which they fuppofed were conftantly emitted to the Eye from the Object, and which, at their firft Emiffion, are very great, and decreafe continually the further they go, till they arrive at fuch a Smallnefs, as will permit them to enter the Eye,
that the Mind may perceive them. DemoCRITUS was alfo much of the fame Opinion; only he thought that thefe Species or Images did not enter the Eye itfelf, but produced Vifion by falling on its fmooth and equal Surface.

Plato fuppofed, that, both from the Eye and the Object, there came fubftantial Efluvia, which, meeting with one another Midway, embraced one another, then returned, and made their Report to the Eye, and fo to the Mind, for caufing the Senfe of Secing.

Aristot le, that famous Philofopher and firft Founder of the Peripatetic Sect, after having refuted the Opinion of Plato and the other Philofophers that went before him, afferts, that Colours, which with him are Qualities of the Object, do move the tranfparent Medium as that does the Eye, and thereby communicates their Images to the Brain, or common Senfory: Yet Galen, that great Difciple of Aristotle, from whom he borrowed moft of his Philofophy, rejeets this Opinion, and rather embraces that of Plato.

Des Cartes fuppofes Vifion is performed by bare Motion only, without any material Emanation from the Object; but only that the Light (which with him alfo is not a Body, but the Motion of the finer Parts of the Me-
dium) moves the Eye juft after the fame Manner as the Object is fuppofed to have determined it, which Motion is continued along the optic Nerve up into the Brain, where it moves the Conarion, or Glandula Pinealis, with him the Seat of the Soul, and by that means produces internal Senfation, and enables the Soul to judge accordingly.

Thefe are the principal Opinions that have been invented for explaining Vifion. But it is impoffible to put them in a fult good Light without taking up too much Time, which we are unwilling to do, efpecially fince now they are all rejected as erroneous.
§2. That we may therefore give fome more fatisfying Account how this noble Senfe is produced, we muft premife the following Lemma:

L E M M A.

Wherever the Rays which come from all the Points of any Object meet again in fo many Points, after they bave been made to converge by Refraction, there they will make a Pitture of the Olject upons any white Body on which they fall.

Demonstration. Let PR (Plare III. Fig. 22.) reprefent any Object without Doors, and AB be a Lens placed at a Hole in the Window-fhut of a dark Chamber, whereby the

Rays

Chap. II. the Humours of the Eye. 353
Rays that come from any Point Q of that Object are, by the refractive Power of the Glass, turned out of their freight Courle, and made to converge and meet again in the Point q; if a Sheet of white Paper be held at q for the Light there to fall upon it, the Picture of that Object PR will appear upon the Paper in its proper Shape and Colours. For as the Light which comes from the Point \mathbf{Q} goes to the Point q; fo the Light which comes from the other Points P and R of the Object will go to fo many other correffondent Points p and r (as is manifeff from the Laws of Refraction above explained.) So that every Point of the Object fall illuminate a correfpondent Point of the Picture, and thereby make a Picture like the Object in Shape and Colour, this only excepted, that the Picture foal be inverted. And this is the Reafon of that vulgar Experimont of catting the Species of Objects from aboard upon a Wall or Sheet of white Paper in a dark Room; which is therefore an experimental Proof of the Truth of this Lemma.
§3. Now this Representation of Objects upon a Sheet of white Paper, by means of a Lens placed at a Hole in the Window-fhut of a dark Room, is perfectly fimilar to what happens in our Eyes when we view Objects; for Vifion, in fo far as our Eyes are concerned, confifts in nothing but fuch a Refraction of

Vol I.

354 Of Vifion and the Ufe of Book III.
the Rays of Light by the tranfparent Sikins and Humours of the Eye, as is neceffary to unite and bring together the Rays which come from the feveral Points of the Object in fo many correfponding Points in the Bottom of the Eye, and there to paint the Picture of the Object upon the Tunica Retina, with which the Bottom of the Eye is covered; which Picture being propagated by Motion along the Fibres of the optic Nerve into the Brain, is the Caufe of Vifion: For accordingly as thefe Pictures are perfect or imperfect, the Object is feen perfectly or imperfectly: If the Eye be tinged with any Colour (as in the Difeafe of the Jaundice), fo as to tinge the Pictures in the Bottom of the Eye with that Colour, then all Objects appear tinged with the fame Colour; if the Humours of the Eye, by old Age, decay, fo as, by fhrinking, to make the Cornea and chryfalline Humour grow flatter than before, the Light will not be refracted enough, and, for want of fufficient Refraction, will not converge to the Bottom of the Eye, but, to fome Place beyond it, and, by confequence, muft paint in the Bottom of the Eye a confufed Pifture; and, according to the Indifinctnefs of this Picture, the Object will appear confufed and indiftinet. This is the Reafon of the Decay of Sight in old Men, and fhews why their Sight is mended by fpectacles; for thofe convex Glaffes fupply the Defect of Plumpnefs

Plumpnefs in the Eye, and, by increafing the Refraction, make the Rays converge fooner, fo as to conveen diftinctly at the Bottom of the Eye, if the Glafs have a due Degree of Convexity: And the contrary happens in fhort-fighted Men, whofe Eyes are too plump; for the Refraction being now too great, the Rays converge and conveen in the Eyes before they come at the Bottom; and therefore the Picture made in the Bottom, and the Vifion caufed thereby, will not be diftinct, unlefs the Object be brought fo near the Eye, as that the Place where the converging Rays conveen may be removed to the Bottom, or that the Plumpnefs of the Eye be taken off, and the Refractions diminifbed by a contcave Glafs, of a due Degree of Concavity; or, laftly, that by Age the Eye grows flatter, till it come to a due Figure; for fhort-fighted Men fee remote Objects beft in old Age, and therefore they are accomited to have the moft lafting Eyes.
§ 4. Thus, in general, Vifion is performed. But, in order to underfland how the feveral Humours of the Eye conduce to the forming of this Image or Picture, (fee Plate III. Fig. 23.) where Z is the Eye, and $\mathrm{B} t, \mathrm{~B} s, \mathrm{~B} u$, \& 6 . are Rays coming to the Eye from the Point B, of the Object $A B C$, placed at a convenient Diftance before the Eye ; of thefe Rays it is obyious, that the middle one Bt being in
the Axis of \cup Vifion, nuift fall perpendicularly upon all the Fumours of the Eye, as it palfes thro' them to the Rctina, and confequently mutt move ftreight forward to b in the Bottom of the Eye, without fuffering any Refraction: But the other Rays, as $\mathrm{B} s, \mathrm{~B} u$, d c . by falling obliquely upon the tranfparent Cornca, which being of equal Denfity with the aqueous Humour, muft have the fame refractive Power; I fay, thefe other Rays, by falling obliquely upon the Cornea, which is denfer than the Medium of Air thro' which they paffed, will be refracted towards the perpendicular; let therefore $h p$ and $h \phi$ be drawn perpendicular to the Cornea, at the Points of Incidence s and u, it is evident, that thefe Rays, by being refracted tovards thefe Perpendiculars, will be made to approach one another, becaufe the Perpendiculars themfelves do fo (for every body knows that Lines cutting a Circle perpendicularly do approach, one another fo as to meet at the Centre) ; and this is the firf Refraction which the Rays fuffer in falling upon our Eyes, by which they are brought nearer to one another, that more of them may pafs thro' the Pupil, and may not be loft upon the Uvea.

A fecond Reffaction which thofe Rays fuffer, is in paffing out of the aqueous Iumour into the Cryfalline; by which Rcfraction
fraction they are made to approach fill more to one another than before; for the Cryftalline being denfer than the aqueous Humour, the Rays here alfo muft be refracted towards the Perpendiculars iP, iP; but thefe Perpendiculars, becaufe of the convex circular Surface of the Cryftalline, do approach one another; and therefore the Rays, which by Refraction are turned out of their ftreight Courfe, and made to move towards thefe Perpendiculars, muft alfo approach one another, and become more convergent: And this is the fecond Refraction which the Rays fuffer in moving thro' the tranfparent Humours of the Eye.
But there is yet a third Refraction which the Rays fuffer in paffing out of the cryfalline into the vitreous Humour; for the cryftalline Humour being more denfe than the vitreous, the Light, in paffing from the Cryftalline into this Humour, will be refracted from the Perpendiculars Pl, Pl: But, becaufe the Surface of this Humour is not convex as that of the other Humours, but concave, anfivering to the convex back Part of the Cryftalline which is lodged therein, thefe Perpendiculars muft recede from one another, as in the. Figure; and confequently the Rays, by being refracted fiom them, mult be made yet more to converge, and approach one another.

358 Of Vifion and the UJe of Book III.
By thefe Refractions, the Rays of Light which come from the Point B, are made to converge and meet again in the Retina at the Point b; and in like manner the Rays that come from all the other Points of the Object, as from A and C , are made to converge to fo many other Points in the Retina, as a, and c, and by that means an inverted Picture of the Object will be painted on the Retina, juft as when, by a Glafs Lens placed at a Hole in the Window-fhut of a dark Room, the inverted Images of external Objects are caft upon a Piece of white Paper placed at a due focal Diftance behind the Lens. And as this is agreeable to Reafon and Geometry, fo it is confirmed by Experience; for if you take off from the Bottom of an Eye, newly taken out of the Head of any Animal, a fmall Portion of the Tunica Choroides and Sclerotica, and place this Eye in a Hole made in the Windowfhut of a dark Chamber, fo as the Bottom of the Eye may be towards you, you fiall then fee the Pictures or Images of external Objects lively painted on the Retina, with their proper Figures and Colours; only thefe Pictures will be inverted, as has been already noticed.
§5. Johannes Baptista Porta is the firf I find who endeavoured to explain V_{i} fion from Pictures entering the Eye. But as

Chap. II. the Humours of the Eye.
he knew nothing of the Refractions made by the Humours of the Eye, whereby thefe Pictures are rendered perfect and diftinct, his Doctrine at beft is but lame and defective. It is as follows:

Having difcovered that Pictures of external Objects are made upon the Wall of a dark Room by Rays coming thro' a frnall Hole in the oppofite Wall, without the Interpofition of any Lens to refract the Rays, (a Pbenomenont that was then new, and had not been before obferved by Naturalifts), he, in his Book de Magia Natural;, printed in the Year 1560, defcribes thofe Pictures at large, and fheivs by what Methods their Diftinctnefs may be promoted; and then concludes, that he had not only decided the grand Difpute about the Reception and Emiffion of Rays, which had fo much divided the antient Philofophers, (fome maintaining that Vifion was caufed by the Reception of Rays into the Eyes, whillt others, as Euclid, Ptolomy, Alhazen, and other antient Opticians, thought it more agreeable to Nature, that certain Emanations, by them alfo called Vifual Rays, fhould flow from an animated Subftance to an inanimate one, rather than on the contrary); I fay, from thofe Pictures, Porta concludes, that he had not only decided the grand Difpute about the Reception and Emiffion of Rays,

360 of Vifion and the Ufe of Book III.
but had alfo found out the true Caufe of Vifion; for, fays he, the Image is let in thro' the Pupil, and is painted on the Surface of the cryftalline Humour, which anfwers to the Wall in the dark Room, as the Pupil does to the Hole in the Window-fhutter. And here he followed the Opinion of Vitellio and others, who imagined we began to perceive when the Cryftalline was enlightened, but that the Perception was not compleat till it was propagated from thence and united as it were in the optic Nerve.
§6. In this Mamer Vifion was commonly explained, till about the Year 1600 , when the learned Kepler made the grand Difcovery, and fhewed, by his Geometry, in what Manner the Rays were refracted thro' all the Humours of the Eye, and formed a diftinct Picture upon the Retina, in like manner as Pictures are formed by a Glafs-globe full of Water. (See his Paralipomena ad V Iteleionem). He alfo difcovered the Conftitution of defective Eyes, that is, how the Pictures became confufed, and fhewed in what Manner they are rendered diftinct by Spectacles, and concave Glaffes, whofe Effects had been fo much admired from the Time of their Invention, (which was only about 300 or 320 Years before), and had fo long perplexed

Chap. II. ${ }^{11}$ the Humours of the Eyc. 36 I
plexed the greatef Wits to account for them. The vulgar Account of Objects appearing erect, notwithftanding the Invertion of the Pictures upon the Retina, is alfo K EpLER's, who tells us, that the Mind perceiving an Impulfe of the Ray on the lower Part of the Retina, confiders this Ray as directed from a higher Part of the Object; and likewife perceives the Impulfe of the Ray upon the higher Part of the Retina, to be directed from the lower Part of the Object: Which Solution Des Cartes illuftrates, by conceiving a blind Man to hold in his Hands two Sticks croffing each other, and to pufh the Top and Bottom of an upright Object with their Extremities; and obferves, that this Man will judge that to be the Upper-part of the Object, which he pufhes with the Stick held in the lower Hand; and that to be the lower Part of the Object which he touches with the Stick in his upper Hand.
§7. I have faid, that according as the Pictures upon the Retina are perfect or imperfect, the Objects are feen perfectly or imperfectly: But we are not from thence to imagine, that the Mind fees or perceives any Pictures in the Retina, or that it judges of Objects from what it obferves in thefe Pictures. This is a vulgar Error: For Proof of which I need only obletve, That,

Vol. 1.
Z z
If f,

362 Of Viflon and the UJe of Book III,
I f, Properly fpeaking, there is no Picture in the Retina, and the Pietures which are feen painted there when a Bit of the Sclerotica and Choroides have been taken off from the Bottom of ain Eye, are Senfations in the Mind of him who perceives them, and do not belong to the Retina on which they appear to be painted. Thefe Pictures, confidered as belonging to the Retina, confift in nothing but the Union or Coalefcence of the Rays that come from the feveral Points of the Object in fo many correfponding Points in the Retina; from which Points in the Retina they again proceed in the fame manner as they proceeded before from the correfponding Points in the Object, and therefore affect the Eyes of the Spectator in the fame manner, and, by affecting them in the fame manner, produce a Senfation fimilar to that produced by the Object itfelf. This Senfation is therefore very properly called a Picture of the Object ; but this Picture being in the Mind of the Spectator, does not belong to the Retina on which it appears to be painted. But,

2 dly , Tho' there was a Picture in the Retina in that vulgar grofs Senfe that fo many imagine, yet it is impoffible that the Mind could perceive it there ; becaufe all the Senfations or Perceptions of the Mind are prefent with it and in the Senforium: And I appeal to every one's Experience, if he ever fees or obferves any

Pietures or any Thing elfe in the Retina. And to fay we fee, obferve or perceive Pittures there, without being fenfible or confcious of it, is abfurd and ridiculous. The Mind or fentient Principle does not at all perceive in the Retinia, but in the Senforium where it is prefent; for when, thro' any Defect or Paralyfis of the Nerve, the Motions or Vibrations impreffed on the Retina by the Rays forming the Picture are not propogated to the Senforium, or that Place of the Brain in which the 'Mind refides, the Mind perceives nothing; nor is it indeed poffible it can perceive any thing ; for whether the Mind be thought active or pafive in its Perceptions, it is certain, that it can perceive nothing but what is prefent with it; for it can no more perceive where it is not, than when it is not; ; and it may as well be or exift where it is not, as act, fuffer or perceive where it is not. All Things perceived muft therefore be prefent with the Mind and in the Senforium, where the Mind refides; and that not only virtually, but fubitantially. Nam virtus fine fubfantia fubfiftere non poteft, as Newton expreffeth it, (Principia Mathematica, School. general. fulb fivern.)

It is therefore evident, that, did the Mind perceive Pictures in the Retina, it behoved to be there prefent: And for the fame Reafon, did it perceive in the other Organs of Senfe, it behoved

364 Of Vifion and the Ufe of Book III.
behoved alfo to be prefent to all the Parts of the Body; becaufe the Senfe of Feeling is diffufed thro' all the Body: Nay, in fome Cafes it behoved to be extended beyond the Bodyitfelf, as in the Cafe of Amputations, where the Perfon, after the Lofs of his Limb, has the fane Perception of Pain, Itching, 6% as before, and feels them as if they were in fome Part of his Limb, tho' it has long ago been amputated, and removed from that Place where the Mind places the Senfation. Having had this Misfortune myfelf, I can the better vouch the Truth of this Fact from my own Experience; for I fometimes ftill feel Pains and Itchings, as if in my Toes, Heel or Ancle, foc. tho' it be feveral Years fince my Leg was taken off. Nay, thefe Itchings have fometimes been fo ftrong and lively, that, in fite of all my Reafon and Philofophy, I could fcarce forbear attempting to fcratch the Part, tho' I well knew there was nothing there in the Place where I felt the Itching. And however ftrange this may appear to fome, it is neverthelefs no way miraculous or extraordinary, but very agreeable to the ufual Courfe and Teinor of Nature ; for, tho'all our Senfations are Paffions or Perceptions produced in the Mind itfelf, yet the Mind never confiders them as fuch, but, by an irrefitible Law of our Nature, it is always made to refer them to fomething external, and at a

Diftance from the Mind; for it always confiders them as belonging either to the Object, the Organs, or both, but never as belonging to the Mind itfelf, in which they truely are; and therefore, when the nervous Fibres in the Stump are affected in the fame Manner as they ufed to be by Objeits acting on their Extremities in the Toes, Heel or Ancle, the fame Notice or Information muft be carried to the Mind, and the Mind muft have the fame Senfation, and form the fame Judgment concerning it, viz. that it is at a Diftance from it, as if in the Toes, Heel or Ancle, tho' thefe have long ago been taken off and removed from that Place where the Mind places the Semfation.

If this fhould prove hard to be conceived, it may be illuftrated by what happens in the Senfation of Colours; for tho' the Colours we perceive are prefent with the Mind, and in the Senforium, yet we judge them at a Diftance from us, and in the Objects we look at; and it is not more difficult to conceive how Pain may be felt at a Diftance from us, than how Colours are feen at a Diffance from us.
§8. This may ftill be further illuftrated, by confidering Vifion by Reflection or Refraction; for an Object feen by Reflection or Refraction does not appear in its true Place, but in that Place from whence the Rays after their laft Reflection

366 Of Vifion and the Uje of Book III.
Reflection or Refraction diverge, in falling on the Spectator's Eye. Thus, if the Object A (Plate III. Fig. 24.) be feen by Refiection of a Looking-glafs $m n$, it fhall appear not in its proper Place A, but behind the Glafs at a, from whence any Rays $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}$, which flow from one and the fame Point of the Object, do, afier their Reflection made in the Points B, C, D, diverge in going from the Glafs to E,F,G, where they are incident on the Spectator's Eyes. In like manner, the Object D (Fig. 25.) feen thro' a Prifm, ap pears not in its proper Place D, but is theince tranflated to fome other Place d, fituated in the laft refracted Ray FG, drawn backwards from F to d. And fo the Object Q (Fig. 26.) feen thro' the Lens AB, appears at the Place ' q, from whence the Rays diverge in paffing from the Lens to the Eye.

Now, as Objects feen by Reflection or Refraction appear and are feen, not in their true Place, but in fome other Place from which they are abfent, and that becaufe the Rays fall upon the Eyes, and make a Picture on their Bottom, in the very fame Manner as if they had come from the Object really placed there, without the Interpofition of the Glafs; fo , when the Impreffion made upon the nervous Fibres of the Stump is the fame as if it had come from an Object acting on their Extremities,

Chap. II. the Humours of the Eye. 367
ties, the Senfation muft alfo be the fame, and the Mind, by forming the fame Judgment concerning it, muft feel it as in the Toes, Heel or Ancle, doc. in which thofe nervous Fibres terminated before the Leg was taken off.
\$9. The ingenious Di. Whytt, in order to account for the Motions of the Heart, and the other Mufcies of Animals after Death, or their Separation from the Body, has fuppofed, that the Soul is prefent with every Part of the Body, not only when the Body is intire, but even after it is divided, and its Parts removed from one another, perhaps to the Diftance of many Miles; and has allo fuppofed, that, in different Parts of the Body, it exercifes different Facukies; that it can only exercife the Power of reflex Confcioufnefs, Imagination, Judgment, Reafon and Memory in the Brain; can only tafte in the Tongue, fmell in the Nofe, fee in the Eyes, hear in the Ears, and feel Hunger in the Stomach, and Pain over all the Body. (See Why tr's Effay on the Vital Motions, Sect. xiii. and Phyfiological Efays, Eff. II. Sect. 2.)

But to me fuch Suppofitions feem much more unaccountable than the Pbenomena themfelves they are brought to explain; for if the Soul continues prefent with every Part of the Body

Dody afier they are removed to a great Diftance from one another, the Soul itfelf muft neceffarily be difcerpible: and it is no Anfiver to this, to fay, "That the Soul is a Subftance " fo perfectly and effentially one, that any " Divifion or Separation of its Parts do " neceflarily infer a Deftruction of ats "Effence." This indeed will readily be acknowledged; but it will not from thence follow, that this fame indivifible Soul, which is fuppofed to co-exift with all the different Parts of the Body, can continue to co-exift with them after they are feparated, and yet fill continue one, without any Divifion or Separation. The natural and plain Confequence of this Indivifibility of the Soul is, that it cannot continue prefent with all the Parts of the Body after they are feparated, and confequently this Hypothefis ought to be laid afide, as repugnant to that Onenefs and Indifcerpibility of the Soul, of which we have fo many irrefragable Proofs.

To fay, that the Soul continues prefent with all the Parts of the Body after their Separation, and yet is not itfelf feparated or divided is to fay, either that the Soul can wholly exift in the Parts of the Body, and yet at the fame Time alfo exift in the intermediate Space; which is a plain aud direct Contradiction, as
no Subfance can exit in two or more different Places at the fame Time: Or if this is not faid, we muft at leaft fay, that the Soul does not wholly exift in the Parts, as it did before their Separation, but paitly in the Parts, and partly in the internediate Space, "fo as to " have its Sphere of Exiftence increafed ; " which feems to be the Opinion of this learned Author. But this alfo neceffarily infers $\mathrm{Se}-$ paration, and of confequence Divifibility; for if the Parts of the Soul can be removed from one another, they can alfo be feparated and divided from one another. And as this Reafoning does not depend " on the Nature of " the Soul, or the Manner of its Exiftence, or " on the way in which it acts upon or is pre" fent with the Body," our being " ignorant " of thefe," is nothing to the purpofe: All that this Reafoning fuppofes, is, that the Soul is one indivifible Subftance, and that it is fubftantially prefent, where it is allowed to be fubftantially prefent: and therefore it is prefumed this Reafoning will be efteemed of fome Force, tho' we knew lefs of the Nature, Powers and Properties of the Soul, than we really do.

And with refpect to the Soul's exercifing different Faculties in different Parts of the Body, this alfo feems to me to be extremely unphilofophical; for the whole Sonl is but one, and this one whole Soul has not fome Powers here, and
other Powers there, but all its Powers are the Fowers of the whole, and all its Actions are the fations of the whole; and this one whole Soul exercifes all its Powers and Facuities in that whole Place in which it is.

But, that I may not tire the Reader with metaphyfical Reafoning, I fhall content myfelf with a Quotation from the learned Dr. Clerk. His Words are: "The Organs of " the Senfes are intirely diftinct from one an" other, but the Thing that perceives by " thofe different Organs is one and the fame " Thing, one thinking Being, which every " Man calls himfelf; and this one thinking " Being has not fome Powers in fome Parts, " and other Powers in other Parts, fome "Actions in fome Parts, and other Actions " in other Parts; but all its Powers are the
" Powers of the whole, and all its Actions are " the Actions of the whole; the whole think" ing Subftance fees both the whole Object " and every Part of it; the fame whole think" ing Subftance hears every Sound, fmells " every Odour, taftes every Sapor, and feels " every Thing that touches any Part of the "Body. Every Imagination, every Volition, " and every Thought, is the Imagination, Will " and Thought of the whole thinking Sub"flance, which I call Myjelf; and if this one " Subftance
"Subftance (which we file the Soul of Man) " has not Parts which can act feparately, it " may as well be conceived to have none " that can exift feparately, and fo be abfolutely " indivifible." (See Clerk's 3d. Defence of bis Letter to Mr. Dodwell.) But it would feem, that Dr Whytt has overlooked this Paffage, elfe it is to be prefunied he would have made fome Anfwer to it, and to the Arguments fcattered up and down thefe Defences in fupport of it; efpecially that Dr. Clerk is allowed to be a Man of great Authority, and that Dr. Whytt himfelf, in quoting thefe very Defences, has told us, " that Perficuity, Metaphyfics, and found "Philofophy, are happily united in them. (Eff. on the Vital Motions, p. 28r.) But to return:
§ ro. Having flewed, that the Mind does not fee any Pictures in the Retina, or judge of Objects from what it obferves in thefe Pictures, it will be afked, what Connection there then is betwixt Vifion and thefe Pictures, and how it comes to pats, that Objects are feen perfectly or imperfectly, accordingly as thefe Pictures are perfect or imperfect.

To this I anfwer, That tho all our Perceptions are Modifications of the Mind itfelf arifing from the Motions on Wibrations excited
in the Senforium, to which the Mind is prefent; yet the Mind never confiders them as fuch, but always afcribes them, either to the Object, the Organs, or both. This I have already hinted at, and finall have Occafion afterwards to demonftrate more particularly, that, in feeing Objeits, the Mind, by means of an original and connate Law, to which it has always been fubjected, traces back its own Preceptions, not only from the Senforium to the Retina, but from thence alfo outwards towards the Objeet itfelf, along right Lines drawn perpendicularly to the Retina from every Point of it on which any Impreffion is made by the Rays forming the Pisture; by which means the Mind or vifive Faculty does always fee every Point of the Object, not in the Senforium or Retina, but without the Eyc, in thefe perpendicular Lines. And this being fo, it is eafy to underfand how the Objest appears perfect, or imperfect, according as its Image on the Retina is perfect or imperfect, without having Recourfe to the groundlefs Suppofition of the Mind's feeing a Picture in the Retina; for when the Rays that come from the feveral Points of the Object are not exactly united upon the Retina, the Piçure of each Point will be a Spot that takes up a confiderable Space upon the Retina, and which, by being mixed and confounded with the Pictures of the neigh-
bouring Points, which alfo are Spots, muft make all the Points of the Object to be feen in a great many Places, and a great many of thefe Points to be feen in the fame Place; from which Confufion, the Appearance of the Object will alfo be confufed and indiftinct.

To illuftrate this, let COB (Plate IV. Fig. 27.) be an Object, whofe Points O, B and C, by emitting Rays that are not re-united at the Retina, but beyond it as far as X, do, upon the Retina, form the circular Images o, b and c; and let F be the Centre of the Eye, thro' which every Line that is drawn perpendicular to the Retina muft pafs. From the extreme Points of thefe circular Images on the Retina $0, b$ and c, draw right Lines to the Centre F, and continue them to the Horopter, as in the Figure; thefe Lines, by reafon they pafs thro' the Centre of the Eye F, will be perpendicular to the Retina: Whence it is evident, that the Points O, B and C muft be feen without the Eye in the whole of the circular Spaces OCIB, BOLH, and CGKO, which are comprehended within the right Lines drawn perpendicularly to the Retina from the extreme Points of the Images of the refpective Points; which Circles being mixed and confounded with one another, it follows, that the Points O, B and C muft, for the Reafon above obferved, appear confufed and indiftinct,

374 Of Vifion and the Ufe of Book III.
diftinct, tho' the Eye fees not the Confufion that is in their Images on the Retina.
§ ir. Before I difmifs this Subject, it may be proper to notice, by way of Corollary, that, fince diftinct Vifion depends on the Diftinctnefs of the Pictures, on the Retina, it is impoffible our Sight can ever be abfolutely diftinet and perfect; becaufe thefe Pictures, even in the beft Eyes, are always fomewhat confufed and indiftinct. This Confufion in the Pictures arifes from atwofold Caufe; Firft, the Sphericalnefs of the Figures of the refracting Humours; and, Secondly, the different Refrangibility of the Rays.
§ 12. As to the Firft, it is a Thing well known, that, after the Difcovery of the true Law of Reffaction, according to the given Ratio of the Sines, Des Cartes, and other Mathematicians, foon found, that all the Rays of a large Pencil could not pofibly be coliected to a diftinct Point by any Lens compofed of fpherical Surfaces, having every where the fame Degree of Curvity ; and that the Aberrations of the Rays from that Foint, were increafed with the Breadth of the Glafs; the exterior Rays of the Pencil being gradually too much bent, as they receded from the Axis of the Lens; or, which is the fame Thing, the interior Rays being gradually too little bent, as they approached this fame Axis, to belong all together
gether to one fingle Point after Refraction; and confequently the Angles of Incidence of the exterior Rays are too large for that Purpofe, both at the firft and fecond Surface of the Globe or Leins. Thefe Aberrations, caufed by the fpherical Surfaces of Glaffes, were then thought the only Impediment to the Perfection of Telefcopes; and this engaged the Mathematicians in determining what Figure a Glais muft have to refract all the Rays of a Pencil to a given Point; and having found, that Glaffes figured according to the Surfaces defcribed by Conic Sections tumed about their Axes, would have that Effect, they prefently fell a contriving Engines for grinding and polifhing Glaffes according to the Shape of thefe Conic Surfaces. Sir Isaac Newton himfelf was employed in this Work in the Year 1666 ; but having a Curiofity at the fame time to try the celebrated Phenomena of the Colours generated by the Refraction of a Prifm, by which he happily difcovered their Caufes, he prefently left off his Glafs-works; for he faw, that the Perfection of Telefcopes was limited, not fo much for want of Glafes properly figured, as becaufe Light itielf is a heterogeneous Mixture of differently refrangible Rays; fo that, were a Glafs fo exactly figured as to collect any one Sort of Rays into a Point, it would not collect thefe alfo into the fame

376 Of Vifion and the Ufe of Book III.

Point, which, having the fame Incidence upon the fame Medium, are difpofed to fuffer a greater Degree of Refraction. This made Newton take Reflections into Confideration; and finding them always regular, fo that the Angle of Reflection of all Sorts of Rays was equal to their Angle of Incidence, he foon underftood, that, by their Mediation, optic Inftruments might be brought to the greateft Perfection. And not long after that, he perfected fuch an Inftrument 6 inches long, which magnified 30 or 40 Times, which he firt defcribed in the Pbilofophical Tranfactions, and afterwards in his Optics. and this is indifputably the greateft Improvement that Telefcopes have ever received fince their firf Invention ; tho' it muft be acknowledged, that Mr. James Gregory of Aberdeen was the firt Inventer of a reflecting Telefcope, which he was led to, not by the Confideration of the different Refrangibility of the Rays, which was not then known, but from an Inconvience he faw would follow from an hyperbolic Objectglafs. Mr. Gregory defcribes this Telefcope at the End of his Optica Promota, publifhed amn. 1 663 ; but its Conftruction is quite different from Sir Isaac Newton's, and not near fo advantageous, as Sir Isaiac himfelf has dhewn. But to return :
§ I3. Tho', frrictly fpeaking, there is always fome Confufion in our Sight, arifing from the Spericalnefs of the Surfaces of the refracting Humiours; yet this Confufion is fo very fmall, that we are not fenfible of it. The Reafon of which may be gathered from a Theorem I find in Newton's Optics for determining the Degree of Confufion arifing from the fpherical Eighne of the Glafs in Pictures formed by a Plano-convain Lens. The Tleorem is as follows:

If the Object-glafs of a Telefcope be planioconvex, and the plain Side bo turned towards the Object, and the Diameter of the Sphere whereof this Glars is a Segment, be called D, and the Semidiameter of the A perture of Glafs be called S, and the Sine of Incidence out of the Glais into Air be to the Sine of Refraction as I to R, the Rays which flow from a Incid Point fo very remote from the Lens, that, before their Incidence, they may be accounted parallel, fhall, in the Place where the Image is nof diftinctly made, ' be fcattered all over a little Circle, whofe Diameter is $\frac{R^{2}}{T} \times \frac{S^{2}}{D^{2}}$ very nearly. As, for Infance, if the Sine of Incidence l, be to to the Sine of Refraction R, as 20 to $3 I$, and if D, the Diameter of the Sphere to which the convex Side of the Glafs is ground, be 100 Feet or I200 Inches, and S, the Semidiameter

378 Of Vifion and the Ufe of Book III.
of the Aperture, be 2 Inches; the Diameter of the little Circle (that is, $\frac{\mathrm{R}^{2} \times S^{3}}{\mathrm{I}^{2} \times \mathrm{D}^{2}}$ will be $\frac{31 \times 31 \times 8}{20 \times 20 \times 1200 \times 1200}$ or $\frac{961}{72000000}$ Parts of an Inch.
§ 14. From this Theorem, it is eafy to fee, that the Circle of Aberrations from the Focus, arifing from the fpherical Figure of refracting Mediums, is fo very fmall, that it can occafion no fenfible Confufion in the Pictures on the Retina, and confequently cannot occafion any fenfible Indiftinctnefs in the Appearance of Objects; efpecially if it is confidered that the middle-moft Rays of a Pencil are crowded fo clofe together by Refraction at fpherical Surfaces and Leinfes, and the outermoft Rays are fcattered fo thin upon a Plane, paffing thro' the Focus perpendicular to the $A x i$, that the Confufion they make in a Picture, by mixing with the Rays of other Pencils, muft be next to nothing, when the Pupil is of a moderate Size.
§ 15 . But the Confufion arifing from the other Caufe, the different Refrangibility of the Rays, is many hundred times greater. For underftanding this, let $A B$ (Plateiv. Fig. 28.) be a Lens; EA, CI, FB, parallel Rays; and let R be the Focus into which the leaft refrangible or Red-making Rays are collected; the Focus V, into which the moft refrangible

Chap. II. the Humours of the Eye.
refrangible or Violet-making Rays are collected, fhall be nearer to the Lens than the Focus R of the leaft refrangible Rays, by about the 28 th Part of the whole Diftance RI; as Newton has demonftrated from accurate Experiments. If therefore thro' R and V the Lines KL and MN be drawn perpendicular to the Axis CIR; MN fhall be $\frac{-7}{28}$ Part of the Breadth of the Glafs AB , and $\mathrm{KL} \frac{1}{27}$ Part: Whence OP, the Diameter of the Circle in the middle Space between thefe two Foci, (which Circle is the leaft into which all the Rays can be gathered) is about the 55 th Part of the Diameter of the Glafs, or of its Aperture, if it have one. And therefore the Error arifing from the different Refrangibility of the Rays in fuch a Lens, as was mentioned in the above Thicorem, where the Aperture was 4 inches, will be meafured by a Circle whofe Diameter is $\frac{4}{55}$ Parts of an Inch; whereas the Error arifing from the Sphericalnels of the refracting Surface, was found to be only $\frac{26 \%}{7200000}$ parts of an Inch, which is 5449 times lefs than the Error arifing from the different Refrangibility of the Rays; and therefore being in Comparifon fo very little deferves not to be confidered.
\$ I6. But you will fay, if the Errors caufed by the different Refrangibility be fo very great, how comes it to pafs that Objects ap-
pear fo diftinct as they do, both thro' Telefcopes, and to the nahed Eye.
To this I anfwer, in the Words of Newton; It is becaufe the erring Kays are not fcattered uniformly over all that circular Space, but collected infinitely more denfely in the Centre, than in any other Part of the Circle; and in the Way from the Centre to the Circumference, grow continually rater and rarer, fo as at the Circumference to become infinitely rare, and, by Reafon of their Rarity, are not frong enough to be vifible, unlefs in the Centre, and veiy near it.

For illufrating this, Sir Isaac has given us a Theorem in his Optics which deferves to be noticed here. It is as follows:

Let ADE (Plate IV. Fig. 29.) reprefent one of thofe Circles defcribed with the Centre C , and Semidiameter AC; and let BFG be a fmaller Circle concentric to the former, cutting whit its Circumference the Semidiameter AC in B ; ani bifect AC in N ; by Computation, Sir Isacreound, that the Denfity of the Light in any Place B , is to its Denfity in N , as AB is to BC ; and that the whole Light within the lefler Circle BFG, is to the whole Light within the freater AED, as $A C^{2}-A B^{2}$ is to $A C^{2}$. Thus, if $B C$ be the 5 th Part of AC, the Light will be four times denfer in B than in N , and the whole Light

Chap. II. the Humours of the Eye. 38 I
Light within the leffer Circle, will be to the whole Light within the greater as 9 to 25 . Whence it is evident, that the Light within the lefs Circle muft frike the Senfe much more ftrongly than that faint and dilated Light round about between it and the Circumference of the greater.

But it is further to be noted, that the moft luminous of the prifmatic Colours are the Yellow and Orange. Thefe affect the Senfes more flrongly than all the reft together, and nest to thefe in Strength are the Red and Green. The Blue compared with thefe is a faint and dark Colour; and the Indigo and Violet are much darker and fainter; fo that thefe, compared with the fironger Colours, are little to be regarded. The Images of Objects are therefore to be placed, not in the Focus of the mean refrangible Rays, which are in the Confine of Green and Blue, but in the Focus of thofe Rays which are in the Middle of the Orange and Yellow; there where the Colour is mont luminous and fulgent," that is, in the brightef Yellow, that Yellow, which inclines more to Orange than to Green. And by the Refraction of thefe Rays (whofe Sines of Incidence and Refraction in Glafs are as 17 and II), the Refraction of Glafs and Cryftal for optical Ufes is to be meafured. Let us therefore place the Image of the Object

382 Of Vifion and the Ufe of Book III.

in the Focus of thefe Rays, and all the Yellow and Orange will fall within a Circle, whofe Diameter is about the 250 th Part of the Diameter of the Aperture of the Glafs Lens: And if you add the brighter Half of the Red (that Half which is next the Orange), and the brighter Half of the Green (that Half which is next the Yellow) about $\frac{3}{5}$ Parts of the Light of thefe two Colours will fall within the fame Circle, and $\frac{2}{5}$ Parts will fall without it round about ; and that which falls without will be fpread thro' almoft as much more Space as that which falls within, and fo in the grofs be almoft 3 times rarer. Of the other Half of the Red and Green (that is of the deep dark Red and willow Green) about one Quarter will fall within this Circle and three Quarters without; and that which falls without will be fpread thro' about 4 or 5 times more Space than that which falls with in ; and fo in the grofs be rarer, and, if compared with the whole Light within it, will be about 25 times rarer than all that taken in the grofs; or rather more than 30 or 40 times rarer, becaufe the deep Red in the End of the Spectrum of Colours made by a Primu is very thin and rare, and the willow Green is fomething rarer than the Orange and Yellow. The Light of thefe Colours therefore being fo very much rarer than that within the

Circle,

Circle, will fcarce affect the Senfe, efpecially fince the deep Red and willow Green of this Light are much darker Colours than the reft. And, for the fame Reafon, the Blue and Violet being much darker Colours than thefe, and much more rarified, may be neglected. For the denfe and bright Light of the Circle, will obfcure the rare and weak Light of there dark Colours round about it, and render them almof infenfible. The fenfible Image of a lucid Point is therefore fcarce broader than a Circle whofe Diameter is the 250 th Part of the Diameter of the Aperture of the Object-glafs of a Telefcope by which the Image is made, or not much broader, if you except a faint and dark mifty Light round about it, which a Spectator will fcarce regard. And therefore, in a Telefcope whofe Aperture is four Inches, and Length one hundred Feet, it exceeds not $2^{\prime \prime} 45^{\prime \prime \prime}$, or $3^{\prime \prime}$. And in a Telefcope whofe Aperture is two Inches, and Length 20 or 30 Feet, it may be $5^{\prime \prime}$ or $6^{\prime \prime}$, and fcarce above. And this anfwers well to Experience; for in fuch Telefcopes the fixed Stars, which, by reafon of their immenfe Diftance, appear like Points, unlefs fo far as their Light is dilated by Refraction, and which therefore, when eclipfed by the Moon, vanifh not gradually, like the Planets, but all at once, and in the End of
$3^{8} 4$ Of Vifion and the Ufe of Book III. the Eclipfe return again into Sight all at once; I fay, in fuch Telefcopes the fixed Stars appear to be about $5^{\prime \prime}, 6^{\prime \prime}$ or $7^{\prime \prime}$ in Diameter, or not much above, as Aftronomers have fquid, by taking the Diameter of their Image formed at the Focus of the Object-glafs by means of a Micrometer; for theie Images fubtend at the Centre of the Object-glafs an Angle of about $5^{\prime \prime}, 6^{\prime \prime}$ or $7^{\prime \prime}$, and fcarce more. But if the Eyc-glafs be tinged faintly with the Smoke of a Lamp or Torch, to obfcure the Light of the Star, the fainter Light in the Circumference of the Star ceafes to be vifible, and the Star (if the Glafs be fufficiently foiled with Smoke) appears fomething more like a mathematical Point.
\$17. But to apply this Doctrine more particularly to the Eye, it muft be remembered, that the optic Nerve is a Bundle of very fmall Fibres or Threads of a certain determinate Bignefs: Thefe Fibres at one End arife from the Brain, and at the other terminate in the Retina; upon the anterior Surface of which they may be fuppofed to fland erect, like the Pile on Velvet: Whence it comes to pafs, that when an Object is fo finall, or fo far removed from the Eye, as to form a Picture on the Retina lefs than one fingle Fibre, that Object will not be feen, becaufe of the Weaknefs of the Impreffion, unlefs it be very bright
and luminous; in which cafe the whole Fibre will be moved by having one Part of it powerfully acted on; and therefore the Senfation will be the fame, as if the Object were much bigger, and did take up or cover the whole End of the Filament, tho' it affects but a tenth Part of it: For, as there can be no more diftinet Senfations, than there are difinct Threads to convey the Impreffion on them, fo, when the Fibre is moved, whether by an Impreffion made on the whole, or on a fmall Part of it, the Senfation will always be the fame, and the Magnitude of the Object, however fmall it may be, will be eftimated, not by the Magnitude of the Picture, but by the Magnitude of the nervous Fibre, on a Part of which the Picture is only made And as this is agreeable to Reafon, fo it is alfo confirmed by Experience; for the leamed Dr. Hook, and other Naturalifts, found by Experiments which they made on Purpofe for examining this Theory, that there is a Minimun Vifibile; that this in moft Eyes is comprehended within an Angle of one Minute; and that whatever is, feen, is feen of that Bignefs, or under that Angle. The Dr. indeed owns, that there are fome who can fee to the third of a Minute, but affures us, that thefe are very few. (See bis Pofthumous Work, p. 12. and 97.). And this is the Reafon why every Vol. I. C c c Star

386 Of Vifion and the Ufe of Book III.
Star that the Eye difcovers appears to moft Men to be of the Bignes of a Minute at leaf; and fo_{o} it is conceived really to be, tho, yet, when we come to examine its Diameter by the help of a Telefcópe, we find it to be but fome few Seconds or 6oth Parts of fuch an Angle.

Now, this much being premifed concerning the Minimum Vifibile, it will not be difficult to fhew, how far our Sight is affected by the different-Refrangibility of the Rays.

For underftanding this, let $A B, A E$ and BD (Plate IV. Fig. 30.) be each of them Diameters of a Minimum Vifibile fubtending an Angle at C , where the Pencils cut one another within the Eye of Half a Minute or 30 Seconds; thefe circular Minima fhall on the Retina form circular Pictures whofe Diameters $a b$, $a e$ and $b d$, will alfo fubtend an Angle at C of Half a Minute or 30 Seconds, and will take up or cover the whole Ends of the nervous Fibres P, Q and R, on which they fall.

By this Means each of thefe Minima will be feen diftinctly and feparately, without any Misture or Confufion; for as each of them makes its Picture on one fingle Fibre, the Motion thereby excited in the Fibre muft produce one uniform Senfation throughout the the whole Extent of the Minimum Vifibile:

Chap. II. the Humours of the Eye: 387
So that all the Parts of the Minimum Vifibile muft appear fimilar and alike, without any: Diverfity in its Parts: And this is the Reaion why, when one Part of the Minimunn I ifibile is yellow, and the other Part blue, as in a Mixture of blue and yellow Powders, the whole appears green: For the fame nervons Fibre, receiving one Kind of Motion from the yellow Colour, and another from the Blue, will, from both together, get a Motion different from, but compounded of both; to which Motion the Senfation of Green being connected by a Law of our Nature, the whole Minimumn Vifibile muft appear Green: And the like Way of Reafoning will account for its other Appearances, when its Parts are of other Colours, or otherwife differently difpofed.

Thus it would be, were the Rays all equally refrangible: Let us now fee what will follow from a different Refrangibility of the Rays.

For this Purpofe, let the Circle of Aberrations from the Focus, arifing from the different Refrangibility of the Rays, be fuppofed to be 6 Seconds in Diameter; it is obvious, that the Rays $A C$ and $B C$, which may be conceived to belong not only to the Minima AE and BD, but alfo to the Minimum AB lying betwixt them; I fay, it is obvious, that thefe Rays will

388 Of. Wifion and the Ufe of Book III.
on the Retina form the Circles a and b, whofe Diameters will at C fubtend an Angle of 6 Seconds: In like manner, if from the outward Limits of thefe Circles a and b the right Lines $c \mathrm{CF}, f \mathrm{CG}$ be drawn, all the Points lying betwixt A and F, and betwixt B and G, will form fuch little Circles on the Retina; a Part of all which Circles will fall on the Picture ab, and the Annulus at the Edge of this circular Picture on which thefe erring Rays fall, will be in Breadth 3 Seconds or the Ioth Part of the Diameter of the Picture; whence the Area of the Anmulus will be to the whole Area of the Picture, as 324 to 900 ; which is a Proportion fomewhat greater than that of I to 3 ; and therefore the Minimum Vifibile AB will not appear abfolutely diftinct, or as it is, by reafon of the enormous Rays belonging to the Minima Vifibilia round about it; which being mixed in its Picture on the Retina throughout the whole of this Armulus, muft make the Minimum partake of the Appearance of the Minima round it, as thefe partake of the Appearance of the Minima round them, and thefeagain of others round them, and fo on; fo that the Senfation of every Minimum will be affected by the whole Minima which are contiguous to it, and confequently none of thofe Minimia will appear altogether diftinet, or as they are. But, as I like rot to divell too long on fuch Subtilities,

Chap. II. the Humours of the Eye. 389
leaving this Subject to be further purfued by others, who may be more as leifure and are more fkilled in Mathematics than I am, I fhall proceed.

C H A P. III.

Of the Change that is made in the Eye in order to See difitinctly at different Diftances, and of the Ufe of the Ciliary Ligament in producing this Change*.

SEct.f. ${ }^{\text {ROM }}$ what has been faid in the preceeding Chapter concerning the Manner of Vifion, and the Ufe of the feveral Humours of the Eye in refracting the Rays, fo as to make the Pictures of Objects' diftinct, it follows, that, in order to fee Objects at different Diftances diftincly, it is neceffary that:

* What follows on this Head, is moftly taken from what I publified before in the Edinburgh Medical Efays, Vol. IV. which having been-well received by the Public, I thought it beft to make but few Alterations in it, excepting fuch as were abfolutely neceflary for connecting it with the prefent Treatile.
that there fhould be a Change in the Eye, left the Place in which the Picture of the Object is exact mould fall hort of or beyond the Retima, and fo caufe the Vifion to be confufed: For Inftance, if uft now my Eye is of fuch a Conformation, as that, when I look upon an Object at a Foot Difance, I fee it perfectly and diftinetly, by reafon that the Rays, which, in coming from the feveral Points of the Object, fall upon my Eye, are fo refracted by the Humours thereof, as to converge and meet again in fo many difinet Points at the Retina; if this fame Object be removed to five or fix Feet Diftance, and the Eye, at the fame time, retain unalterably its former Conformation, it muft appear confufed and indiftinct ; becaufe the Rays, which come from the Object at this Diftance, are lefs diverging, than when it was at a Foot Diftance; and confequently will, in paffing the Hunours of the Eye, be made to conveen before they reach the Retina, and fo paint thereon a confufed. Image of the Object: Whence it feems evident, that, in order to fee Objects equally diftinct, at one Foot's Diftance, and fix Feet Diftance, it is neceffary that the Eye change its Confornation ; either, by having its Hunours made more or lefs flat, or, having the Diftance betwixt the Cryfalline and the Retina increafed or dimis nifhed. And this dqes likewife further appear

Chap. III. by the Ligamentum Ciliare. 39 t
by the Analogy of the Images painted on the Retina, and thole painted on a Sheet of white Paper, by means of a Leins placed at a Hole in the Window-fhut of a dark Chamber; for if the Leins be of fach a Convexity, as is neceffary to paint the Inage of a Body, at a Fcot Diftance from it, diftinctly upon a Sheet of white Paper, five or fix Inches behind the Leirs, the fame Object removed to the Diftance of fix Feet from the Window, will not be painted exactly upon the Paper, unlefs, in place of the former Lens, you fubftitute one lefs convex, or dimininh the Diftance betwixt the Lens and Paper, by bringing the Paper nearer the Window.
\$ 2. From thefe and fuch like Arguments, taken fron the Manner of Vifion, moft Phyficians, as well as Philofophers, have been brought to believe, that we have a Faculty of changing the Conformation of our Eyes, in order to fee Objects diftinctly at different Diftances; yet the famous French Academift Mr.de la Hire is of a contrary Opinion, and contends, that at whatever Diftance Objects be placed, yet the Eyes never alter their Conformation; and this he endeavours to demonftrate from feveral Reafons, and particularly from the following Experiment, which is truly yery ingenious and beauiful:

392 The Eye adapted to Difances Book III.

Take a Card, and pierce it with a Pin in two, three or more Places, fo as the moft diftant Holes be not further from one another than the Widenefs of the Pupil: This done, thut one of your Eyes, and apply the Card clofe to the other, fo as to view a fmall Object through its Holes; you fhall be furprized to fee this Object multiplied as many times as there are Holes in the Card, providing it be placed out of that precife Place, where it would be moft diftinctly feen by the naked Eye; e.g. If I fee an Object diftinetly when at a Foot Diftance, it will appear fingle at that Diftance, when viewed thro' the perforated Card; but if it be removed to four, five or fix Feet Diflance, it will always appear multiplied as often as there are Holes in the Card. In like manner, if the Conformation of the Eye be fuch, as it cannot fee Objects diftinctly but a t four Feet Diftance, it will at that Diftance appear fingle through the Card, but at all leffer Diftances it will be multiplied.

To make This Experiment with Exactnefs, you muft, for an Object, look to a fmall luminous Point in a dark Place, fuch as a little Hole in a Card placed before a Candle, or elfe you muft look at a finall black Object placed before a white Surface.

Now, it is certain, that if the Rays of Light that come from each Point of the Object are exactly

Chap. III. by the Ligamentum Ciliare. 393

exactly united in a correfponding Point of the Retina, the Object will always appear fingle, tho' it be viewed thro' feveral fmall Holes; for the little luminous Cones, OHH, Obh, (Plate IV. Fig. 31.) which have for their Apex or Top a Point of the Object O, and for their Bafis the little Holes in the Card HH, bh, will alfo have all their oppofite Tops oo, in one and the fame Point o of the Retina RR, which muft needs make the Object appear fingle: But if the Eye have not that Conformation, which is neceffary to re-unite thefe Rays in a Point in the Retina, each of thefe little Cones will be cut by the Retina, either before or after their Re-union, and therefore each Point of the Object fhall, by its Rays, touch the Retina in as many diftinct Places as there are Holes in the Card; and confequently the Object will appear multiplied, according to the Number of Holes. Thus, if the Rays conveen before the Retina, let AB be the Retina, it is evident, from the Figure, that this muft receive the luminous Pencils at two difinct Places x and x. And if the Rays conveen behind the Retina, let CD be the Retina, which alfo muft receive the luminous Cones at the diftinct Places c and c. In both which Cafes, the Object mutt appear double, by reafon that its Pieture falls on two diftinct Places of the Retina: Whence it is eafy to lee, that if the Vol. I.

D d d.
Card

394 The Eye adapted to Diftances Book III.
Card be pierced in three or more Holes, fo as the moft difant Holes may not be further from one another than the Diameter of the Pupil; the luminous Pencils, and the Places in the Retina where thefe Pencils do fall, muft be multiplied according to the Number of Holes; from which Multiplication the Object itfelf muft alfo be equally multiplied. From all which, the above named Author concludes, that the Conformation of our Eyes is never changed, at whatever Diftance Objects be placed: For, fuppofe that I fee an Object diftinctly at a Foot Diftance, and at the fame Diftance it appears fingle, when viewed through the perforated Card; if, to fee the fame Object at four Feet Diftance, it were requifite that the Eye changed its Conformation, thein he concludes it would do fo, when the Object is viewed at that Diftance through the Card; which does not happen, as is evident from its being multiplied.

This is the great Argument whereby M. de la Hire, both in the Fournal des Şavans, amm. 1685, and in his Differtation fur les differens Accidens de la Viie publifhed in the Year 1693 , endeavours to prove, that the Cryftalline does not change its Figure or Situation, and in general, that the Eye receives no new Figure or Conformation, in viewing Objects at different Diftances. And, to do Jufice to the learned Author,

Chap. III. by the Ligamentum Ciliare. 395
Author, it mult indeed be acknowledged, that at firf View the Argument feems to go a great Way towards a full Demonftration of what he alledges; nor, fo fan as I know, has any Thing been yet offered by any Author, whether Phyfician, Anatomift or Optician, that can in the leaft weaken or difprove it ; and yet all of them, excepting Maitre-Jean and fome few others, continue to teach, that our Eyes change their Conformation according to the Diftance of Objects, without fo much as once taking notice of de la Hire's Reafoning, or attempting at an Anfwer; which muft appear very ftrange to every Body that confiders the Character of the Author, the Strength of his Reafoning, and how long ago it is that his Opinion has been publifhed to the World.
\$3. In anfwer to this Argument of de la Hire, I once fufpected, that, when an Object is viewed thro' a preforated Card, the Eye, by endeavouring to fee the Card, adapted itfelf to as near a Diftance as it could, and, by continuing in that State, occafioned the Object to appear muitiplied when at a greater or leffer Diftance, than that to which the Eye is then accommodated; but, by fome Experiments, to be mentioned below, it foon appeared, that the Eye did not endeavour to fee the Card, nor by any fuch Endeavour was it accommodated to the neareft Diftance poffible ;

396 The Eye adapted to Difances Book III.

poffible; and therefore fomething elfe muft be fought for, in order to reconcile this Multiplication of the Object with our having a Power of accommodating our Eyes to its Diftance.

But, for the better underfanding this Matter, it may be proper, before I go further, to clear up the State of the Queftion, by admonifhing the Reader, that it is not here meant to inquire, why a fmall Object is thus multiplied when placed without the Limits of diftinct Vifion ; it being evident, that it ought then to appear multiplied, by reafon that the Eye can never adapt itfelf to its Diftance. Thus, if I cannot fee diftinctly any Object that is nearer than Half a Foot, it muft appear multiplied at four Inches: And if I cannot fee an Object diftinctly that is further off than two Eeet, it muft appear multiplied at three Feet, and all greater Diftances. But my meaning is to account for this Multiplication, when the Object is placed within the Limits of difinct Vifion, which we have here fuppofed to be at a Foot and a Half Diftance from each other. And, after various Conjectures on the Matter, I am now, at laft, fully fatisfied, that there are two Caufes that concur in caufing this Phianomenon, by hindering the Eye to accommodate itielf to the Diftance of Objects viewed thro' the per-

Chap. III. by the Ligamentum Ciliare.
forated Card, viz. the diftinct Appearance of the Object, and the Miftake that the Mind commits with refpect to its Diftance.
That the Object appears diftinct when viewed thro' a perforated Card, is evident from Reafon as well as from Experience; for the little luminous Cones OHH , Obh (fee ftill Fig. 31.) which have for their Apex or Top a Point in the Object O, and for their Ba/ts the little Holes in the Card HH, bh, will, by reafor of their Acutenefs,' proceeding from the Smallnefs of the Holes, take up but a very little Space upon the Retina, whence the Object muft appear pretty diftinct. Thus, if the Object is at too great a Diftance, let o bethe Place where the Rays conveen, and let $A B$ be the Retina; ; it is plain, that the luminous Pencils will fall on the Retina at x and x, where, for the Reafon juft now mentioned, they muft take up but a very little Space; and confequently the Confufion muft be very finall. In like mamer, if the Object is too near, let CD be the Retina, and o the focal Point where the Rays are united, thefe Pencils will, at c and c, occupy fo frall a Space on the Retina, as to occafion no fenfible Confufion in the Object ; whereas, in both Cafes, had it not been for the Interpofition of the Card, the luminous Cone mom, would, on the Retina, have taken up the whole Space αx or

398 The Eye adapted to Difances. Book III.
$c c_{\text {s }}$ which muft have rendered the Appearance of the Object very confufed and indiftinct. To correct which Confufion, the Eye changes its Conformation, and adapts itfelf to the Diftance of Objects feen with the naked Eye. But, when by means of the perforated Card, this Confufion is taken off, the Mind will not then change the Conformation of our Eyes, there being nothing that fhould influence it to fuch an Action. And this is one Reafon why the Object is fo frequently found multiplied, according to the Number of Holes thro' which it is viewed, tho' it be placed within the Limits of dictinct Vifion, to which the Eye can perfectly accommodate itfelf.

But there is yet another Caufe which muft concur towards this Multiplication, and that is, the Miftake into which the Mind falls with refpect to the Diftance of the Object. It is not enough that the Mind perceives no Confufion: For though this Confufion in our Sight is commonly believed to be the only thing that can influence our Mind to change the Conformation of our Eyes; yet, by reafon of that neceffary Connexion and Dependence, that will be hereafter fhown to have been eftablifhed by Habit and Cuftom between thofe Motions, whereby the Conformation of our Eyes is changed, and certain

Chap. III. by the Ligamentum Ciliaic. 399
correfponding Motions of the Axes of Vifion, thefe Motions come at latt always to accompany one another, and that fo neceffarily as to make it impoffible for us, by any Act of Volition, to direct our Eyes to any Object within the Limits of diftinct Vifion, without, at the fame time, giving them that Difpofition that is necefiary for feeing diftinctly at that Diftance; and therefore, tho' there fhould be no Confufion in the Object, when feen thro' the perforated Card, it would not then appear multiplied, if placed within the Limits of diftinct Vifion, did not the Mind miftake its Diftance: For when the Mind judges rightly of the Diftance of any Object, both Eyes are neceflarily directed towards it, and that as well when one of them is fhut, as when both are open; from which Direction of our Eyes, they mult alfo be accommodated to its true Diftance: Whence the Object will not appear multiplied, and therefore there muft be another Caufe, befides the diftinct Appearance of the Object, that muft concur in this Multiplication ; and that is, the Miftake the Mind commits with refpect to its Diftance.

I know that M. de la Hire affirms, that we judge rightly of the Diftance of Objects viewed thro' a perforated Card ; and indeed moft People, upon Trial, will be apt to fall into the fame Miftake; but we will afterwards have

400 The Eyc adapted to Difances Book III.
Occafion to touch upon all the Means the Mind can poffibly employ for judging of the Diftance of Objects; from which it will appear, that in the Cafe before us, we can fcarce form any Judgment with refpect to Diftance, but what is wholly founded upon Prejudice and Anticipation, which cannot fail of betray-: ing us into Error and Miftake. Seeing then that we are fo liable to be mittaken in the Judgment we form of the Diftance of $\mathrm{Ob}-$ jects feen thro' a perforated Card, it needs be no Surprize that the Eye fhould not be accommodated to their true Diftance; and that, for want of this Accommodation, they fhould appear multiplied according to the Number of Holes thro' which they are viewed.
§ 4. Thus I have fully aufwered the Argument wherein de la Hire places his main Strength, and have fhown that the Eye may be poifeffed of a Power of changing its Conformation, and of adapting itfelf to the Diftance of Objects, tho' this Power fhould not be exerted when the Object is viewed thro' a perforated Card. But then our Author alledges, that from an anatomical Examination of all the Parts belonging to our Eyes, it will be found, that none of them are capable of making any of thofe Changes in the Eye, that are fuppofed neceflary for feeing diftinctly at different Diftances; but this

Chap. III. by the Ligamentum Ciliare. 40 E
we fhall confider afterwards, when we come to inquire into the Caufes of there inward Motions in our Eyes.
§ 5 . There is yet another weighty Argument brought by the learned Author againt this Change in our Eyes; and that is, that there is no Need of fuppofing any fuch Change; and that the Eye can fee Objects diftinetly enough at different Diftances, fo as not to be fenfible of any Defect in the Sight, without being obliged to have Recourfe to any Change in its Conformation.

For underitanding this, we muft firft obferve, that if an Object appear diftinct at fix Feet diftance, that is, if the Conformation of the Eye be fuch as is neceffary to refract the Rays which come from a Point of the Object at that Diflance, fo as that, in falling upon the Retina, after Refraction, they imprefs it with a diftinct Image of that Point from whence they came, then at whatever greater Diftance the Object be placed, it will alfo appear diftinct: The Reafon of which is, that when the Object is at fix Feet Diftance, the Rays: which, in coming from a Point thereof, fall upon the Pupil, are nearly parallel: And therefore at whatever greater Difance the Object be placed, the Rays may be conceived as parallel, and confequently the fame Conformation of the Eye that is ne-

Vol. I. Eee ceflary

402 The Eye adapted to Difances Book III.
ceffary to refract them, fo as to make the Ob ject appear diftinct at fix Feet Diftance, will alfo refract them in the fame way, and thereby make it alfo appear diftinct at all greater Diftances.

Now, this being underftood, let us fee how de la Hire accounts for diftinct. Vifion at different Diffances, without changing the Conformation of the Eye.

Suppofe then that a Man's Sight is good, that is, that he fees Objects diftinctly enough at a Foot Diftance, and likewife at fix Feet Diftance; it follows, from what has been faid, that to fee Objects at all greater Diftances than fix Feet, there is no Need of any Change in the Conformation of the Eye: So that the only Queftion is, How the Object can appear diftinct, both at the Diftance of fix Feet, and of one Foot, without fuffering any Change in its Conformation?

To this the above named Author anfwers, that to fee Objects fo diftinctly, as not to be fenfible of any Defect in the Sight, it is not needful that the Rays, which come from a Point in the Object, fhould be united accurately in a Point in the Retina, but that it is fufficient they flould be nearly fo; whence he concludes, that if the Conformation of the Eye be fuch, as when an Object viewed thro' two Holes in a Card at two Feet Di-

Chap. III. by the Ligamentum Ciliare. 403

ftance appears fingle, becaufe all the Rays that come from the feveral Points of the Object are united accurately in fo many Points in the Retina; then, at one Foot Diftance, the Place where the Rays meet will be a little behind the Retina, and at fix Feet Diftance it will be a little before it, tho' not fo much in either Cafe as to render the Object indiftinct; becaufe the Rays which come from the feveral Points in the Object, do, in falling upon the Retina, meet nearly, tho' not accurately, in fo many correfponding Points: And therefore he concludes, that thofe who have their Eyes of a Conformation proper to fee Objects moft diftincly at two Feet Diftance, will alfo fee them diftinctly enough both at one Foot Diftance, and fix Feet Diftance; and if they fee diftinctly-at fix Feet Diftance, then they muft alfo fee diftinctly at all greater Diftances: And thus he accounts for that perfect Vifion which ftands in the Middle betwixt fhort and long Sight, without any Change in the Eye.

And as for the Sight of old Men, who cannot fee diftinctly at any lefs Diftance than three Feet, he fuppofes that their Eyes are of a proper Conformation to fee Objects at four Feet Diftance moft diftinctly; from which he infers, that at three Feet and all greater D_{i} ftances, the Picture of Objects upon the Retina will be pretty diftinct, and confequently they

404 The Eye adopted to Diftances Book III.
will be feen without any fenfible Confufion, tho the Eye fuffers no Change in its Conformation.

In 1 ke manner, in thofe that are fhortfighted, and cannot fee Objects diftincely at a greater Diftance than a Foot, he fuppofes the Eye to be of a Conformation proper to fee moft diftinctly at Half a Foot's Difrance, and thence concludes, that the Pi cture made on the Revina, when the Object is at any Diffance betwixt four Inches and a Foot will not be confufed; and confequently the Object will be feen diftinctly enough, without any Change in the Eye, unlefs its Diftance be greater than a Foot, or lefs than four Inches; in which Cafe the Image on the Retina will begin to be confufed, and confequently the Object itfelf will alfo appear confufed and indiftinct.
$\$ 6$. This is in few Words the Sum of what de la Hire advances, concerning our feeing Objects diftinctly at different Diftances, without having Recourfe to any Change in our Eyes. And indeed it cannot be denied but the Eye has fome Latitude of feeing Objects diftinctly, without changing its Conformation, tho' they be a little further from, or nearer to the Eye, than what is neceffary for collecting the Rays that come from the feveral Points of the

Object

Chap. III. by the Ligamentum Ciliare. 405
Object in fo many precife Points in the Retina; and that becaufe when the Object is not far removed from that Place, at which the Rays coming from the Object meet again at the Retina, the Image thereof will be pretty difinct, and therefore will not occafion any fenfible Confufion of Sight.

But it does not from thence follow, that our Eyes do not change their Conformation, when Objects are much removed from that Place where they appear moft diftinctly: For befides what we have faid before, in fpeaking of the Images of external Objects, caft upon a Sheet of white Paper, by means of a Lens placed at a Hole in the Window-fhut of a dark Chamber, where we obferved, that in order to make the Image diftinct, it was neceffary, according to the differeat Diffance of the Object, either to change the Lens, for one more or lefs convex; or to change the Diftance betwixt it and the Paper, by bringing the Paper nearer to, or further from the Lens, according to the different Diftances of the external Object ; I fay, befides this, Experience teaches us, that the Conformation of our Eyes is changed, in viewing Objects at different Diftances. For every body knows, that the Eye cannot fee equally diftinctly, at the fame time, Objects at different Diftances, c. g. If with one of your Eyes, the other be-

406 The Eye adapted to Diftances Book III.

ing fhut, you look attentively to a fnall Ob ject, fuppofe a Pin, at Half a Foot or a Foot from the Eye, and at the fame time place another at fix Feet Diftance, that at fix Feet will appear exceeding confufed; but if you apply yourfelf to obferve accurately that at fix Feet Diftance, then will appear diftinctly, but the other next the Eye will appear very confufed and imperfect; which plainly fhews, that when the Difpofition of the Eye is fuch as is neceffary for making a diftinct Picture of the Pin at one Diftance, the Place where the diftinct Picture of the other Pin is made, muft fall fhort of, or beyond the Retina; and confequently, upon the Retina itfeif the Pifture muft be confufed, from which Confufion, Vifion is rendered imperfect and indiftinct; and therefore, fince at pleafure I can fee diftincly either of the Pins I will, while at the fame time the other appears confufed, it follows, that I have a Power of changing the Conformation of my Eye, and of adapting it to the different Diftances of Objects: And this is the only Reafon can be given, why Objects without Doors do not appear diftinct thro' a Windowglafs, when the Eye is attentive in obferving the little Scratches or Particles of Duft upon the Surface of the Giafs: And, on the contrary, when attentive to the external Objects, it does not diftincly obferve the Scratches or opaque Particles

Chap. III. by the Ligamentum Ciliare. 407

Particles of Duft upon the Glafs ; the Conformation of the Eye in the one Cafe being fuch as to paint diftinctly upon the Retina the Images of the Scratches and Particles of Duft, but not to paint thofe of the external Objects but confufedly; and, in the other Cafe, the Conformation of the Eye is adapted to paint exactly upon the Retina the Images of external Objeets; and therefore the Place, where the diftinct Images of the Scratches are made, muft fall behind the Retina, from which they muft appear confufed and imperfect : And, indeed, were it not for the Change that is made in the Difpofition of the Eye, it were very difficult to explain how Birds, that duck in Purfuit of their Prey, fhould be enabled to fee both in Air and Water, feeing the Refraction that happens in the Eye is fo far different in the one Cafe from what it is in the other.

To weaken the Force of thefe Objections, M. de la Hire has Recourfe to the Mobility of the Pupil, from which he endeavours to account for diftinct Vifion at all Diftances, without any Change in the Conformation of the Eve; but with what Succefs will appear afterwards when we come to treat of the Motions of the Pupil.
$\$ 7$. Having thus confidered what de la Hire brings in fupport of his Hypothefis, I fhall now proceed to fome Experiments I made

408 The Eye adapted to Difances Book III.
for meafuring the Strength and Weaknefs of Sight; whereby not only the Fallacy of de la Hire's Reafoning will be made further manifeft, but it will alfo be demonftrated, beyond all Exception, that our Eyes change their Conformation, and adapt themfelves to the various Diftances of Objects, within certain Limits; which Limits will alfo be accurately determined: But that thefe Experiments may be the better underftood, I muft firft premife the following Axioms:

A X I O M I.

When an Object, feen with both Eyes, appears double, by reafon that its Difance is lefs than that to which the Eyes are directed, upon covering either of the Eyes, the Appearance that is on the contrary Side will vaniff; and if it appear double, becaule its Diftance is greater than that to which the Eyes are directed, upon covering eitber of the Eyes, the Appearance that is on the fame Side will vaniJo.

Illustration. To illuftrate this, (See Fig. 32. 33. and 34. Plate. IV.) where A and B are the Eyes, x the Object, which is at a fmaller Diftance than the Point C, to which both Eyes are directed: It is evident, that while the Eyes continue directed

Chap. III. by the Ligamentum Ciliare. 409 directed to C; the Object x mult be feen in two different Places, which, with refpert to the Horopter, to which all Objects are referred, will be D andE; for, being feen by the Right-eye B, in the Direction of the vifual Line $\mathrm{B} \times \mathrm{D}$, it muft, at D , hide a Part of the Horopter DCE; and being feen by the Lefteye A, in the Direction of the vifual Line AnE, it muft hide a Part of the Horopter at E; and therefore, with refpect to the Horopter, on which the Eyes are fixed at C, the Object x muft appear to the Right-eye B , as at D , and to the Left-eye A, as at E; and, in covering either of the Eyes, the Appearance that is on the contrary Side will be made to vanifl.

In like manner, if the Eyes are directed to x, the Object C , which is further off than $x_{\text {, }}$ will be feen by the Right-eye B, in the Direction of the vifual Line $\mathrm{B} m \mathrm{C}$; and by the Left-eye A, it will be feen in the Direction of the vifual Line AOC: And therefore, with refpect to the Horopter $m x \mathrm{O}$, to which all Objects are referred, it muft appear double, as at m and O ; and in covering the Right-eye B , the Appearance that is on the right Side towards 1,2 will vanifh; and in covering the Left-eye Λ, the Appearance that is on the lef: S de towards O will vanifh: All which is exacdy agreeable to Experience.

4io The Eye adapted to Difances Book III.

A X I O M II.

When an Object appears double, from its being feen with one Eye thro' two fmall Holes made in a Card, or any other opaque thin Body, if its Difance be greater than that to which the Eye is accommodated, upon covering either of the Holes, the Appearance that is on the fame Side will be made to vanijh; and if its Diftance be lefs than that to which the Eye is accommodated, upon covering either of the Holes, the Appearance that is on the contrary Side will be made to vanilh.

Illustration. Let E be the Eye, (See Plate V. Fig. 35. and 36.) QT the Card, in which are two fmall Holes d and r, and let A be a fmall Body, at a greater or leffer Diftance than that to which the Eye is accommodated; the Rays of Light Ad, Ar, will not, after Refraction, converge to a Point in the Retina; but, by reafon that the Diftance of the Object A is greater or lefs than that to which the Eye is accommodated, they will be made to converge to fome other Point, either before or behind the Retina, fuch as o; but on the Retina itfelf they will fall on the different Points i and m, at both which a Picture of the Object will be formed; from which Duplication of the Picture

Chap. III. by the Ligamentum Ciliare. 4 II
Picture the Object itfelf will alfo appear double at C and B, , viz. in the right Lines $i \mathrm{C}$ and $m \mathrm{~B}$, which are fuppofed to be drawn perpendicular to the Retina from the Points i and m, where the Pictures fall. Whence it is evident, that if the Hole at d be covered, there will be no Inage at i, and confequently the Appearance at C will vanifh; and if the Hole at r be covered, there will be no Image at m, and confequently the Appearance at B muft vanifh: But, when the Object A is at a greater Difance than that to which the Eye is accommodated, as in Fig. 35. the Appearance that is made to vanifh, by covering either of the Holes d or r, lies on the fame Side with the covered Hole. But, when the Object A is at a lers Diftance than that to which the Eye is accommodated, as in Fig. 36. the Appearance that is made to vanifh lies on the contrary Side of the Hole that is covered; as has been affirmed in the Axiong.

Exper. f. I took a fmall Plate of white Iron IK, (See PlateV. Fig. 37.) in which I cut two paralilel narrow Slits, whofe Diftance from one another did not exceed the Diameter of the Pupil, Thefe Slits gave Paffage to more Light than what could pafs thro' the Holes; and therefore were fitter for my Purpofe, it being neceffary that the Object fhould be clearly feen. This Plate I held clofe to my Right-eye B, in fuch

412 The Eye adapted to Difances Book III.
fuch mannet as the Slits might have a vertical Pofition; and having fhut my Left-eye A, thro' thefe Slits I viewed the friall Object O, which alfo had a vertical Pofition, and confequently was parallel to the Slits. In this Experiment the Object O was at fuch a Diftance from the Eye B, as to appear firigle, when viewed in this manner thro' the Slits: But, when both Eijes were opened, and directed to a more diftant Point, fuch as P, three Appearances were feen, a, b and C ; which Ap pearances were nearer to, or further from eaili other, according as the Point P was nearer to, or further from the Object O ; and in covering the Left-eye A, the Appearance a, that was on the contrary Side, did vanifh; which Appearance did therefore belong to the Eye A. And, in covering the right Eye B, the Appearances on the contraiy Side b and C , belonging to the Eye B, did vanifh ; from which I was certain, that the Diftance of the Object O was lefs than that to which the Eyes were directed. (See $A x$. I.) This being done, my next Bufinefs was to examine, whether thefe double Appearances b and C, that were feen thro' the Slits, did not alfo proceed from the Object O its being at a lefs Diftance than that to which the Eye B was then accommodated; and upon Trial I found it was fo; for, by covering either of the Slits with my Finger, the Appeazance

Chap. III. by the Ligamentum Ciliare. 413

Appearance on the contrary Side was always made to vanifh. (See $A x .2$.)

Having fatisfied myfelf as to thefe Particulars, I changed the Direction of my Eyes, and turned both inwards towards a nearer Point, fuch as x, by which alfo three Λ ppearances were feen d, e and F; and thefe A ppearances were alfo nearer to, or further from one another, according as the Point x was nearer to, or further from the Object O; but they were always in a contrary Order to thofe that were feen, when my Eyes were directed as above: For the Appearance F, feen by the Left-eye A, was on the left Side, and the Appearances d and e, which were feet thro' the Slits by the Right-eye B, were on the right Side; whence I was certain, that the Diftance of the Object O was greater than that to which my Eyes were directed. I then covered one of thefe Slits with one of my Fingers, and I found that the Appearance that was on the fame Side did always vanifh; from which, when compared with the fecond Axiom, it follows, that the Object O is then at a greater Diftance than that to which the Eye is accommodated.

In making this and all the following Experiments, it was neceffary that the Object 0 fhould be as conificuous as poffible: What upon trial I found to anfwer beft, was a narrow Slit made in a dark Lantern, in which a lighted

414 The Eye adapted to Difances Bcok III.

Candle was put, to render it luminous, tho fometimes I alfo made ufe of a black Line upon white Paper, or a white Line upon black Paper ; both which anfwered very well in all the Experiments wherein the Diffance of the Object did not exceed two Feet; but when the Diftance was greater, thefe Lines began to be obfcure, and by reafon of their Obfcurity, the Experiment did not fucceed fo wwell.

It muft alfo be obferved here, once for all, that tho', in the above Experment, it was eafy for me to direct my Eyes to a Diftance that was either greater or lefs than the Diftance of the Object O, without the Affiftance of any other Object, on which my Eyes might be fixed; yet in this, as well as in many of the fubfequent Experiments, I was fometimes obliged to put an Object in that Place, towards which both Eyes were to be directed; and this was always neceffary, either when a great Effort was needful to give the Eyes the defigned Direction, or when, for obferving the Phenomena more accurately, the Experiment required that the Eyes fhould for fome Time be kept fixed in a certain determined Direction; both which are made much eafier, by having an Object on which the Eyes may be fixed. When it was required that my Eyes fhould be directed to a very near Diftance, for the

Chap. III. by the Ligamentum Ciliare. 415
Object O, I made ufe of a black or white Line, made on Paper of an oppofite Colour; and at the Place x, to which my Eyes were to be directed, I held in a horizontal Pofition, and parallel to my Eyes, any fmall Object $z x$, fuch as a Bit of the Stem of a Quill, whofe Extremity x I looked at for an Object; but when the Experiment required that my Eyes fhould be directed to fome Point at a confiderable Dittance beyond the Object O, for the Objeit O, I made ufe of the narrow Slit in the Lantern ; and at the diftant Point P, to which my Eyes were to be directed, I placed another dark Lantern, in which was the horizontal Slit PQ, whofe Extremity P, which was feen by the Right-eye, in the vifual Line BOP that paffed immediately above the upper End of the Object O, ferved me as a Point of View, on which I could eafily fix both Eyes, while I attended to the Appearance of the Object O.

Now, from this Experiment, compared with the preceeding Axioms, it clearly follows,
imo, That we are poffeffed of a Power of changing the Conformation of our Eyes, and of adapting them to various Diftances.

2do, This Change in our Eyes, whereby they are fitted for feeing diftinctly at different Diftances, does always follow a fimilar Motion

416 The Eye adapted to Diftances Book III. in the Axes of Vifion, with which it has been connexted by Ufe and Cuftom; for, when the Eyes were directed to P, the Object O was feen double thro' the Slits, and by covering one of the Slits,' it appeared that the Eye was adapted to too great a Diftance; and as the Point P was brought nearer and nearer the Object O, thefe Appearances approached nearer and nearer to one another continually, till at laft, when the Point P became very nigh to O, they coincided in one at O ; which fhews that the Eye was then adapted to its Difance. But when the Point P was moved along the Line $\mathrm{O} x$, from O to x, two Appearances of the Object O were again feen thro' the Slits; which Appearances being in a contrary Order from what were feen, when the Point Pwas on the other Side of the Object O , it follows, that the Eye was then adapted to too finall a Diftance. And as the Point P, in its Motion from O to x, receded further and further from Ot thefe Appearances receded further and further from one another continually. From all which, it is evident, that there is a neceffary:Connection and Dependence eftablifhed betwixt thofe Motions, whereby the Conformation of our Eyes is changed, and certain correfponding Motions in the Axes of Vifion, which makes it impoffible for us to direct our Eyes to any Object within the Limits of diftinct

Chap. III. by the Ligamentum Ciliare. 417.
diftinct Vifion, without at the fame time giving them that Difpofition that is neceffary for feeing diftinctly at that Diftance; but thefe two Corollaries will be fill further confirmed by the Experiments that follow.

Exper. 2. The Diftance of the Object O (ftill Fig. 37.) being 5 Inches, I viewed it thro' the Slits, the other Eye A being fhut or covered, and it appeared double ; and, upon covering either of the Slits, the Appearance that was on the contrary Side was made to vanifh, and therefore the Diftance of the Object was lefs than that to which the Eye was accommodated; and both Eyes being open, and directed to x, whofe Diftance from the Eye was about three or four Inches, three Appearances were feen, d, e and F , whereof the A ppearances d and e belonged to the Right-eye, B, and when with my Finger I covered either of the Slits, the Appearance that was on the contrary Side did vanifh; whence it is evident, that I cannot, by any Effort, fit my Eyes to fo fmall aDiftance as five Inches.

Exper. 3. 4. and 5. At fix, feven and eight Inches Diftance, when one Eye was fhut, the Object O, feen thro' the Slits, appeared double; and by covering one of the Slits, it was evident that its "Difance was lefs than that to which the Eye was accommodated. And in looking with both Eyes to x, whofe
Vol. I. Ggg Diftance

418 The Eye adapted to Difances Book IIT.
Diftance from the Eye was about Half the Diffance of the Object O, a double Appearance was feen, one at F, belonging to the Eye A, and the other at x, belonging to the Eye B; but this Appearance at x was always fingle, tho' feen thro' the Slits; whence it follows, that my Eye cannot accommodate itfelf to a Diftance that is much lefs than fix, feven or eight Inches.

Exper. 6. At the Diftance of nine Inches, the Object O, feen thro the Slits, the other Eye being fhut, appeared fometimes fingle, but mofly double; and when it appeared double, it was evident, by covering either of the Slits, that it was too near, with regard to the Difpofition of the Eye; and when both Eyes were open, and direded to the Quill x, which was at Half the Difance precifely, three Appearanceswere feen, whereof the Appearances d and e did belong to the Right-cye B, to which the Slits weee applied; and in covering one of thofe Slits, the Object on the fame Side difappeared: Whence I was certain, that the Object was too far off, and that my Eye can be accommodated to a lefs Diftance than nine Inches, but not much, as may be learned from the Nearnefs of the Appearances, as well as from the four laft Experiments.

Chap. III. by the Ligamentum Cilirre. 419

From the five laf Experiments laid together, we may fafely draw the following Corollary, viz.

The neareft Linits of diftinct Vifion, in my Eyes, is at about feven Inches Diftance; for, by the fecond Experiment, it appears, that my Eyes cannot be fitted to fo fmall a Diftance as five Inches; and by the laft Experiment it is plain, that they can be accommodated to a lefs Diftance than 9 Inches; and the third, fourth and fifth Experiments make it manifef, that, at fix, feven, and eight Inches Difance, the Object feen thro' the Slits appears always fingle, whatever Effort be made to double it, by ftraining the Eyes to fee a nearer Object; whence, the middle Diftance feven Inches, feems to be nearly the neareft Limits of my Eye, beyond which it cannot go ; and therefore, all Objects that are nearer than feven Inches, muft appear more and more confufed, according as their Diftance is lefs and lefs than feyen Inches.

Exper. 7. In looking to an Object at two Feet Difance thro' the Slits, the other Eye being that, it always appeared double and too far off, and in looking with both Eyes to a more diftant Object, it was then alfo feen double; but, in covering either of the Slits, the Appearance on the oppofite Side did vanifl: Whence it was evident, that the Object was

420 The Eye adapted to Diftances Book III.

then too nigh; but thefe Appearances were fo clofs, that they did almoft touch one another; which fhews, that my Eyes can fearce go further, than to accommodate themfelves to the Diftance of two Feet.

Exper. 8. At two Feet and a Half, three Feet, and all greater Diftances, the Object O not only appeared double and too far off, when viewed with one Eye thro' the Slits; but when both Eyes were open, and directed to a very diftant Object, the double Appearance that was then feen thro' the Slits, was fuch, as by covering one of the Slits, made it evident, that even then the Object was too far off; from which it follows, that my Eyes can never by any Effort be accommodated to fogreat a Diftance as two Feet and a Half.

Corol. From this, and the immediately preceeding Experiment, it feems probable, that the furthef Limits of my Sight reaches to the Diftance of about 27 Inches; for, by Experiment 7 . it is plain, that I can accommodate my Eye to a Diftance that is greater than two Feet, and by the laft Experiment it is manifef, that my Eye cannot accommodate itfelf to fo great a Diftance as two Feet and a Half: Whence it feems reafonable to conclude, that the furtheft Limits of my Sight lies about the middle Diftance betwixt both.

Exper.

Chap. III. by the Ligamentum Ciliare. 42π
Exper. 9. and 10. At ten and twelve Inches Diftance, the Object O , feen with one Eye thro' the Slits, did, as in Experiment 6. where it was at the Diftance of nine Inches, appear fometimes fingle, but frequently double and too nigh.

Exper. II. and 12. At the Diftance of fifteen and eighteen Inches, one Eye being fhut, the Object O, feen thro' the Slits, appeared fometimes fingle, and at other times double; but when it was double, by covering one of the Slits, it was always found to be too far off.

Corol. From the four laft Experiments, as well as from fome of the preceeding ones, it is manifeft, ima, That the Eye does frequently miftake the Diftance of the Object feen thro' the Slits; for when its Diftance lies betwixt the Linits of diftinet Vifion, to which the Eye can eafily accommodate itfelf, it would never appear double did not the Mind miftake its Diftance. And this is the Reafon why, when both Eyes are open and directed to the Object, it appears fingle at all Diftances within the Limits of diftinct Vifion, by Reafon the Eyel is then accommodated to its Diftance; which is then known to us by mearis of the Angle which the optic Axes make at the Object.
$2 d o$,

422 The Eye alapted to Diftances Book.III:
$2 d 0$, The Judgment which the Mind forms with refpect to the Diftance of Objects; feen with only one Eye thro' the Slits, is not always the fame, but is fluctuating and inconftant, as may be gathered from the four laft Experiments, where the Object fometimes appeared fingle, and at other times double; and when it appeared double the Diffance betwixt the Appearances was not conftantly the fame.

3 tio, If the Object feen thro' the Slits, the other Eye being fhut, is not much beyond the nearef Limits of diftinct Vifion, when the Mind miftakes its Diftance, it. imagines it further off than it really is; as is evident from the 4 th, 5 th, 6 th, 9 th, and 10 th Experiments. But,
$4^{t o}$, When the Object is not a great deal nearer than the furtheft Limits of diftinct Vifion, when we miftake its Diftance, we imagine it nearer than it really is; whence it apppears double, becaufe it is too far off with refpect to the Conformation of the Eye; as does appear from the 7 th, 11 th, and 12 th, Experiments.

If it fhould be here inquired, why the Mind miftakes the Diftance of the Object feen thro' the Slits, the other Eye being fhut? To this I anfwer, that by running over all the Means the Mind can poffibly employ for judging

Chap. III. by the Ligamentum Ciliare. 423
of the Diftance of Objects, which Means we will have occafion to touch upon below, it will appear, that, in the Cafe before us, we can fcarce form any Judgment with refpect to Diftance, but what is intirely founded upon Prejudice and Anticipation : And therefore, it needs be no Wonder, that we are frequently led into Error and Miftake, and that the Mind fhould be fo fluctuating and inconftant in the Judgment it forms of Diftance.

W en I made the foregoing Experiments, I defigned to repeat them with more Care and Exactnefs, and to make fome new ones of the fanie Sort, by Means of an Infrument I had contrived for that Purpofe ; which, from its Ufe in meafuring the Limits of diftinct Vifion, and in determining with great Exactnefs the Strength and Weaknefs of Sight, may be called an Optometer; but I was then interrupted, and I have not now time to take thofe things into further Confderation; thofe who defire fuch an Inftrument, may eafily make one from what has been above fuggefted.
§ 8. Having thus fufficiently demonftrated, that our Eyes do change their Conformation, and adapt themfelves to the different Diftances of Objects, it remains, that we examine whereiii' this Change confifts, and by what Mechanifm it is introduced; about which Authors are very much divided in their Opinions; the chief

424 The Eye adapted to Diflandes Book III.

chief of which we fhall now confider, and fix upon what we think moft probable, leaving every Body at Liberty to differ from us, as he fees Reafon.

Some are of Opinion, that the whole Globe changes its Figure, by being lengthened into an oblong Figure, when Objects are near ; and by beconing flat, when they are removed to a greater Diftance. This indeed very well accounts for the diftinct A ppearance of Objects at different-Diftances ; for according as Objects are nearer or further from our Eyes, their Images will be painted at different Diftances behind the cryftalline Humour. And therefore, "if we have a Power of rendering the Eye flat or oblong, the Retina will be brought to that precife Place behind the Cryftalline, where the perfect Image of the Object is made, and confequently will be feen diftinctly.

Now, this Change in the Figure of the Eye is differently explained by Authors: Some maintain, that it is rendered oblong, by the joint Contraction of the two oblique Mufcles; and this Opinion Dr. Keill likewife embraces. His Words are: "The aqueous Hu" mour being the thinneft and moft liquid, "eafily changes its Figure, when either the "Ligamentum Ciliare contracts, or both the " oblique Mufcles fqueeze the Middle of the "Bulb of the Eye, to render it oblong, when

Chap. III. by the Ligamentum Ciliare. 425

"Objects are too near us." (See his Anat. chap. iv. Sect. 4.)

But this is by no Means probable; for, in order that the Eye may be rendered oblong by the Contraction of thefe Muicles, it is neceflary to fuppofe, that they prefs its Sides inward towards its Axis; but this they cannot perform, becaufe, their Difpofition is not proper for that Effect: Had they been fo difpofed as to embrace the Globe in the Form of a Ring, their Contraction might then have qqueezed the Eye into an oblong Figure ; but their prefent Difpofition is very far different from what feems neceffary for producing this Change it the Eye, which we fhall not now repeat, having, in treating of the External Motions of this Organ, defcribed them at fome Lenght.

But befides this, there is yet another Argument againft the Eye's changing its Conformu. tion, when thefe Murcles contiact; and that is, that in feveral Creatures their Difpofition is very far different from what it is in Man: Thus, in the Pike, they are both fituated in the under Side of the Eye, where they decuffate one another in Form of a Crois, as his been already obferved from AQUAPE:dent and Perrault : In the Ca is Carcharias, and in fome other Fifhes of the Dog-kind, Steno has obferved, that the fuperior Oblique had no Trochlea, but that its Crigin and Progrefs was altogether fimilar to the Vol.I.

426 The Eye adapted to Diffances Book III.

inferior Oblique. (See his Canis Carcharice diffectum Caput, and his Diffectio Pifcis ex Canum genere). And Peyerus the Son, in his Obfervationes A natomice, tells us, that the grand Oblique is alfo without any Trochlea both in Geefe and Hares; whence it feems improbable, that thefe Muf cles fo differently difpofed, in different Animals, do ever fqueeze the Eye, fo as to render it oblong; and yet it muft be allowed, that they have a Power of accommodating their Eyes to the different Diftances of Objects, as well as other Creatures; which therefore mult be fought for fome where elfe than in the oblique Mufcles.
§ 10. Another Opinion concerning this Change of our Eyes is, that the four Jreight Mufcles, acting together, comprefs the Sides of the Globe, and by this Compreffon, reduce it to an oblong Figure, when Objects are near; and that by its natural Elafticity it recovers its former Figure, when thefe Mufcles ceafe to act.

But tho this Opinion be received by the learned Boerhaays, as well as by the Generality of other Authors, yet there are many Objections, which render it very doubtful, if not altogether abfurd: For when thefe Mufcles act together, they muft draw the Eye inwards, and prefs its Bottom againft the Fat, which touches it in that Place: But all Action and Re-action being equal, it follows,

Chap. III. by the Ligamentum Ciliare. 427
follows, that the Back-part of the Eye muit be prefled forwards by the Fat, with as much Force as the Murcles draw the Eye inwards; and confequently, that the Force whereby there Mufcles endeavour to lengthen the Eye, by compreffing or fqueczing its Sides, muft be balanced and taken off, by the Preflure of the Fat, againft the Back-part of the Eye. The other Objections againft this Hypothefis muft be taken Notice of below, to which the Reader muft therefore be referred for faving Repetitions.
II. Others are again of a quite contrary Opinion, and would perfuade us, that when thefe four Atrcight Mujcles act together, they render the Eye flat, by pulling it inwards, and preffing its Bottom againft the Fat, and that it is again reduced to its former Figure, either by the joint Contraction of the two oblique Muicles, of by the inherent Elafticity of its Parts, which exerts itfelf when the flreight Mufcles ceafe to act:

But neither doss this Opinion appear probable; for, when thefe Mufcles contract, they not only endeavour, by prefing the Eye againft the Fat in the Bottom of the Orbit, to render it flat, but likewife fqueeze the Sides of the Eye, and by that means endeavour at the fame time to render it oblong, which two Actions being equal, becaufe proportional to

428 The Eye adapted to Difances Book III.
the fame Caufe, viz. the Contraction of the Mufcles, and being contrany to one another, they mut deftroy each other.

From what has been faid, it feems very probable, that the Eye can neither become flat nor oblong, either by the Action of the freight or oblique Mufcles. And this does yet further appear from the following Reafons:

Imo, Did the Eye accommodate itfelf to the Diftance of Objects, by any Change in its frigure, arifing from the Contraction of sits Mufcles, this Change would be aifferent in differeat Pofitions of the Eye, and only regular in one Situation of it.
Gur 2to, If you prefs your Eye gently with y your Finger, all Objects feen with that Eye will appear confufed and indiftinct, neither will they appear more peffect, at whatever Difance they be placed. If you afk the Reafon of this Phanomeron, I know no better Anfwer, than that that determined Situation of the fmall Fibres compofing the Retina, which is neceffary for diftinct Vifion, is by the Preflure of the Finger difturbed and difordered: And therefore, it is not eafy to underftand, how the fame Difpofition fhould not be equally difordered by that fuppofed Compreffion of the Mufcles, which is neceffary for changing the Figure of the Eye.

Chap. III. by thé Ligamentum Ciliare. 429

ofis § 13 . 3 tio, A third Argumenf againft this Change of Figure in the Eye, sis, that in fome Creatures the Sclerotice is fo very hard as does not allow of any fuch Change; and this Difpofition in the Sclerotica is generally obfervable in all Birds and Fiftes, both which have it bony, from the middle of the Globe, to its Forc-part, where it joins the Cornea, as has been obferved by AQ UApendent, the French Academifs, and many other Anatomifts. Mr. Ranby has obferved, that this bony Circle in the Oftrich confifts of fifteen bony Scales joined to one another, fo as to make one circular Bone round the Cornea, of which he has given a Figure in the Pbilofoplical Tranfactions. And Mr. Warren has fince found, that the Oftrich has this Ring in common with otlier Fowls, both of the Water and Land, with this Difference only, that the Ring in Water-Fowls confifts of fifteen, and in Land-Fowls but of fourteen Bones, and that they are fo difpoled, that one Bone lies over the Ends of two others, then three or four lie over one another like the Scales of Fifh; thên one Bone lies -under the Ends of two others, and then two or three more follow again, like the Scales of Fifh; but he thinks, that unlefs there be a Eufus Naturce, Mr. Rañ By's Figure does fiot exprefs it fo very jufty as it might be dente: which Ranby himfelf in another Paper feems
to acknowledge. (See Pbilofopl. Tranf. Abrid. Vol. VI.) But whatever be in this, one Thing is certain, that in all Fowls, as well a Fifhes, a great part of the Sclerotis is hard and inflexible: And particularly in the Owl, Mr. Perrault fpeaks as if it were wholly bony, yet I find, that Peyerus the Son makes it a little fofter towards the Entry of the optic Nerve. But what makes moft for our Purpofe, is, that in fome Fifhes the whole of the Sclerotica is of a cartilaginous or bony Subflance; thus it is in the Whale, in which alfo its Thicknefs is more than an Inch, as RUYsCH obferves, (Thefaur. Aratom. Maxim. N° LI.) In the Sea-Fox, this Tunicle, tho' thin, was by the French Academifts found "fo " hard that it might rather pals for a Bone "than a Cartilage." (See their Memoirs for the natiral Hiftory of Animals.) And the like has been obferved by Steno, in the Canis Carcharias, and fome other Fifnes of the Canine Kind, "Sclerodis tunica pars anterior, et. "tranflucens, (fays he in his Canis Carcharie "- difectum Caput) ,une Cornea dicitur, bic plana "crat, reliqua pars vere dura, ceteris in codem pif " ce cartilaginibus fimilis ; fic et in avibus, magna "Iclerodis parsoffea reperitur, むoc." SANCTORINI, in his Obfervationes Anatomice, (cap. IV. fect. 2.) has alfo a very remarkable Obfervation to thefame Purpofe: His Wordsare, 2 vontiamnulla

Chap. III. by the Ligamentum Ciliare. 43 I.
funt, que circa oculi mufculos adnotanda babèmus, de corundem u/y quedam proporiere libet: Num Scilicet, proter ejufdem oculi motum, illum fic vel retrabant vel producant, ut vel ins planiorem, vel in acutiorem figuram ille conformetur? Hanc me in queffionem induxit olfeam prorfus reperife in Thinni oculis fictoratidem mentbranam, ob cuyus quidem foliditatem ac diritiem, nullo mufculorum vel valentiflimo nifu confituta poteft figura commutari. 2uapropter - fi in co pijce quidquam commodi ex ejus figure varietate natura a peravifet, aliud quodpiam artificium in ejus vicem machinata fuifet, doc. Now, from thefe Obfervations, it is very plain, that in many Animals it is impoffible that the Eye can accommodate itfelf to the different Diftance of Objects, by varying its Figure, the Action of its Mufcles being infufficient to overcome the Refiftance of its cartilaginous or bony and almoft inflexible Tunicles; and yet it cannot be denyed but they have a Faculty of changing the Conformation of their Eyes, and of adapting them to the Diftance of Objects, as well as other Creatures, which therefore we mult expect to find fomewhere elfe than in any of its Mufcles.

It may indeed be faid, that tho' the Change made in the Eyes of Birds and Fifhes, does not proceed from the Action of its Mufcles, yet it does not from thence follow, that in Man and other Animals who have the Tunicles of
the Eye flexible and yielding, the Contraction of thefe Mufcles does not produce fome Variation in the Figure of the Eye: This I readily own; yet, if we confider, that Nature is very confonant and conformable to herfeif in all her Actions, we can hardly doubt but the fame Caufe, which, in Fifhes and Birds, accommodates their Eyes to the diftinct Vifion of Ob jects at different Diftances, does likewife produce the fame Change in the Eyes of Men, efeecially fince there is nothing to be found in the Eyes of thefe Creatures, capable of producing that Change, but what alfo obtains in humanEyes.

I am not ignorant, that fome have feigned certain Fibres going from the Choroides to the Cryftalline in Birds; and others have fuppofed, that in Fifhes there is likewife fome peculiar Difpofition for adapting their Eyes to the Diftances of Objects. But with refpect to Birds, Perrault, and the French Academifts have particularly obferved, that there are no fuch Fibres different from thofe that compofe the Mar-fupiume nigrum, which can never anfwer that End, being adapted to another Purpofe, to be explained afterwards; and as for Fifhes, that pretended Mechanifn is fo darkly explained, and that only by Authors of fo little Character and Reputation, that it does not deferve Credit. But,

Chap. III. by the Ligamentum Ciliare. 433

§14.4to, To put this Matter out of all Difpute, we muft have recourfe to the following Obfervation, viz. A Man having a Cataract in both Eyes, which intirely deprived him of Sight, committed himfelf to an Oculif, who finding them ripe, performed the Operation, and couched the Cataracts with all the Succefs could be defired; but after they were couched, he could not fee Objects diftinclly, even at an ordinary Diftance, without the Help of a very convex Lens; which is what every body has obferved to be neceffary to all thoie who have had a Cataract couched : Neither is the Reafon thereof difficult; for as a Cataract is not a Philm fwimming in the aqueous Humour, as has been generally believed, till of late, but an Opacity in the Cryftalline itfelf; and as the couching of a Cataract confifts in introducing a Needle into the Eye, and turning down the opaque Humour below the Pupil, it is evident that the Cryftalline cannot be difplaced and turned down to the under Part of the Eye, but the vitreous Humour muft, in giving way to it, be pufhed into its Place ; but becaufe its Denfity is lefs than that of the Cryftalline, it follows, that the Rays of Light will be lefs refracted, and therefore will not meet at a Point in the Retira, but at fome Diftance behind it; from whence the Sight muft be confufed, unlefs a convex Glais of a due Degree of Convexity Vof.I.

I i i
be brought to Affiftance, which, by refracting the Light, may render its Rays lefs diverging. and thus fupply the Refraction which is want ing in the Eye by the Depreffion of the Crys ftalline; and this is the true Reafon why there can be no diftince Vifion after the couching of a Cataract, unlefs when Objects are viewed through a convex Glafs of a due Degree of Convexity; nor has the Efflux of the aqueous Humour any Concern in this Phanomenon, feeing it is again reftored, as was known to Galen, as before obferved: But this is not all that happens after the Depreffion of the Cataract; for it was alfo obferved, that the fame Lens was not equally ufeful for feeing all Objects diftinctly, but that he was obliged, for feeing: them diftinctly, to ufe Glaffes of different Des grees of Convexity, ftill the more convex the nearen the Object.

To make this Experiment with great Exactnefs; and to provide againft all Poffibility of Miftake, it were proper to cover that Side of the Lens, that is ciext to the Eye with black Paper, in the Middle of which, two narrow parallel Slits have been made; whofe Diftance from one another does not exceed the Diameter of the Pupil. . By this means, if the Eye ftill retains its Faculty of changing jits Confornation, a fmall Objeet, that is at fuch a Diftance as to. appear fingle through the Slits, when the other

Eye

Chap III, by the Ligamentum Ciliare.
Eye is flut, may be made to appear double, by opening both Eyes, and directing them to a nearer or more remote Object, as has been explained above; whence, if no fuch double Appearance can be feen, we nay conclude, with great Certainty, that the Eye has loft its Power of accommodating itfelf to the Diftance of Objects. I have never had an Opportunity of making the above Experiment myfelf; but when any fuch offers, I defign to make it in this Manner, or rather to employ the Inftument formerly mentioned; which, for its Ufe in meafuring the Limits of difinct Vifion, and in determining with the ytmof Exactnefs the Strength and Weaknefs of Sight, I have called an optometer. In the mean time, from the Experiment, as it fands, we may fafely draw the following Corollariess

Corol. I. From what happens in couching the Cataract, the Eye lofes the Faculty of adapting itfelf to the various Diftances of Objects.

Corol. 2. Did that Change in the Eye, that is neceffary for feecing Objeats at different Diftances, depend upon the Action of its Mufcles, then, after the Depreffion of a Cataract, the fame Lens will anfiwe all Objects of whatever Diftance; bat fince this is not Fact, it follows, that however the Mufcles of the Eyc may be fuppofed to change a little its Figure, yet this Change is not fufficient to provide

436 The Eye adapted to Difances Book III.

wide for the diftinct Vifion of Objects at all Diflances.
TaCOROL.3. Seeing that nothing happens in the Eye, in couching the Cataract, but that the Cryftaline is depreffed, it follows, that the Change made in cur Eyes, according to the Diftance of Objects, muft be attributed to this Humour.
\$15. It remains now that we inquire what this Cnange of the Cryftalline is, and by what Mechanifin it is produced.
Some maintain, that according as Objects are at different Diftances, this Humour becomes more or lefs convex, which does indeed very weil account for diftinct Vifion at all Diftances; for Objects painted on a Sheet of white Paper, bex means of a Lens placed in the Hole of a Window-hhut of a dark Chamber, have their Images always diftinct, at whatever Diftance they be from the Window, provided that the Iens be of a Convexity anfwerable to that Diflatice.

Others again are of Opinion, that the Cryftalline never changes its Figure, but that it is moved to and from the Retina, according to the Diftance or Proximity of the Object in View; and this alfo does equally well account for the diftinct Appearance of Objects at all Diftances, as is evident from the Laws of Optics, as well as from the vulgar Experiment of cafting the

Chapr:III. by-the Ligarnentum Ciliare. 43
Species of Objects from abroad upon a Sheet of white Paper, by means of a Lens placed at a Hole in the Window-hut of a dark Chamber: For the Picture will always be difinct, at whatever Diftance the Object may be, provided that the Paper be at a due focal Diftance behind the Lens.

Thofe that embrace the firf Opinion fay, that the Ligamentum Ciliare, which arifes all sound from the Infide of that Circle of the Choroides where it joins the Uvea, does by its Contraction draw the Edge of the Cryftalline, to which it is attached all round, towards that Circle; and by that means makes it broader and flatter than before, when Objects are at a Diftance from the Eye; and that when we view inearer Objects, this Ligament is relaxed, and the Cryftalline recovers tits Convexity by the Elafticity of its Parts: And to render this Opinion ftill the more probable, they contend, that it is for this End that Nature has made the outer Part of this Humour of a Subftance eafily flexible and yielding, that it may-with greater Facility yield to the Contraction of this Ligament.

But, if we obferve accurately the Situation of the Ligamentum Ciliare, we will find, that it is fuch as difqualifies it for rendering the Cryftalline more flat, by increafing its Breadth; for its Fibres are not in the fame Plane with

438 The Eyc adapted to Diftances Book III.
the Cryftalline, but have an oblique Direction, as in (Fig. 38. PLATE V.) where C is the Cry ftalline Humour, aCa its tranfyerfe Diameter, ao, no the Ligamentum Ciliare (fometimesalfo called the ciliary: Procefs). Now, in order to draw out the Cryftalline into a broad flat Figure, or, which is a jufter Way of conceiving this Matter, in order to draw out and extend its Capfule, fo as it may comprefs the Cryftalline into this Figure, it feems neceffary it fhould be drawn according to the Direction of the Lines $a b$ and $a b$, which are in the fame Plane with the tranfverfe Diameter of this Humour $a \mathrm{C} a$; but this: cannot be perfoinied by the Ligamentum Ciliare, becaufe its Direction is oblique; and therefore it can never by its Contraction change the Figure of the Cryftalline.
5) $\S 16$. Nor is this Opinion rendered more probable from the different Subftances of which the Cryftalline is compofed: It is indeed true; and has been obferved by Anatomifts, that tho' this Humour be all very folid, in refpect of the other Humours of the Eye; yet it is not all throughout of the fame Confiftence, being exterially like a thick Gelly, but internally, towards its Centre, of a Confiftence equal to that of hard Suet: This external foft Part of the Cryftalline is by fome reckoned to be about the Third of its whole Bulk; and,
and, in Fifhes, this Difference of Confiftency: is in a particular Manner remarkable, who are therefore faid to have a double Cryftallines the one very fmall and folid, in the Centre of the other, which is larger, but of a fofter and lefs folid Subftance. This little Cryftal line, which is as it were a Nucleus or Kernel to the other, in whofe Centre it is placed, is never found wanting in the Eyes of Fifhes; and indeed in all Animals, fo far as has been obferved, this Huniour is atways much fofter externally than towards its Centre. But it does not from this follow, that Nature has thus foftened the external Part of this Humour, that its Figure may be the more readily varied for feeing diftinctly at all Diftances, but for another very wife and neceffary Purpofe: For it is certain, that the Rays of Light which fall upon the Extremities of the Cry falline, by reafon of their greater Obliquity, muft be more refracted than thofe which fall upon its Middle, near its; Axis, by which means they will be made tomeet at different Diftances behind the cryftalline Humour; thefe towards its Extremity, neafer, and thefe near its Axis, at a greater Diftance; fo that it is impoffible for all to be united exactly upon the Retina for rendering the Sight diftinct: And therefore, to prevent this Inconveniency, provident Nature, which is newer known to do any Thing in vain, but always
44° The Eje adopted to Difances Book III.
always for the beft Purpofes, has very wifely, towards the Centre of the Cryftalline, made its Subftance more denfe and folid, that the Ray's of Light, that fall on the Cryftalline, near its Axis, may, in paffing this Nucleus, have their Refraction increafed, and by that means may be made to converge, and meet at the fame Point with thefe that pas the Cryftalline towards its Edge or Extremity.

This is the Reafon why the Crytalline of all Animals is more folid in its Centre than externally, and why in Fifhes this Difference is fo remarkable; for in them this Humour being fpherical, as has been obferved above, the Rays that fall thereon, at fome Di^{-} ftance from its Axis, by reafon of their great Obliquity, would be made to meet at a greater Diftance from the Point of Union of the other Rays that pafs near its Centre, than in Land-Animals who have this Humour lenticular; and therefore, to prevent this Inconveniency, which would have rendered the Sight prodigioufly indiltinct, Nature has provided them with that fmall folid Cryftalline, in the Centre of the other, whofe Denfity far exceeds that of the Nucleus of LandAnimals.

All this might be demonfrated mathematically; but if a Glas Lens be covered with opaque Paper, in which there are two Holes,

Chap. III. by the Eigamentum Ciliare. $44 \mathbf{I}^{1}$ one at the Axis of the Glafs, and another towards its Edge, and if this Glafs be placed in a Hole of the Window-hut of a dark Room, fo as to refract a Beam of the Sun's Light. upon a Sheet of white Paper, placed at a due focal Diftance behind the Lens, it will be found, that the Beam that paffeth the Hole towards the Edge of the Lens, will cut the Axis before the Focus of the Glafs, and fall on the oppofite Side of the Paper. From all which, it is evident, that the different Confiftency obfervable in the cryftalline Humours, does not prove that they are rendered flatter by the Contraction of the ciliary Procefs, as fome Authors would perfuade us, but to diminifh the Refraction where the Rays fall moft obliquely, and thereby to difpofe them to meet in the fame Point with thore which pafs thro, its Middle, which was abfolutely neceffary for diftinct Vifion, unlefs the Pupil had been much lefs than it now is; in which Cafe, our Sight had not been near fo clear as it is at prefent.
\$ 17 . If it fhould be faid, that the Cryftalline changes its Conformation, and becomes more or lefs convex, by the Action of certain mufcular Fibres that enter its Compofition, it is incumbent on thofe who entertain this Opinon, to fhew us thefe Fibres. The Cryftaline, when dried, does manifetly enough appear
Vol. I.
K k k
to be made up of many thin concentrical Lamina or Scales lying one upon another, of which Mr. Leeuwenhoek reckons there may be 2000 in one Cryftalline from the outermoft to the Eentre, and every one of thefe Scales, he faith, he hath difcovered to be made up of one fingle Fibre, or fineft Thread, wound in a moft ftupenduous Manner this way and that way, fo as to run feveral Courfes, and meet in as many Centres, and yet not to interfere or crofs one another in any one Place. In Oxen, Sheep, Hogs, Dogs and Cats, the Thread frreads in three feveral Courfes, and makes as many Centres; in Whales five, but in Hares and Rabbets only two; in the whole Surface of an Ox's Cryftalline, he reckons there are more than i 2000 Fibres juxta-pofited. But, for the better underftanding the Manner of this admirable Piece of Mechanifm, I muft refer to the Cuts and Defcriptions in his Works, and in the Prilofopbical Tranfactions, num. 165 . and 293. from which it will appear, that this Difpofition is but ill qualified for changing the Figure of the Cryftalline, and for adapting it to the Diffance of Objects. But fuppofing it were otherwife, and that it could be made appear that the Difpofition is well fitted for that Effect, I am afraid it would not be fo eafy to prove-thofe Fibres to bermufcular, and capable of Contraction.

Chap. III. by the Ligainentum Ciliare. 443
§ 18. There is yet another. Argument againft this Hypothefis of the Cryftalline's changing its Figure, by means of mufcular Fibies that enter its Compofition, which muft not be omitted; and that is, that it has no vifible Attachment or Communication with any Part of the Body, but is kept in its Place by means of a membranous Capfiule with which it has not the leaft Connexion; whence it is, that when this Capfule is opened, the Cryfalline efcapes of itfelf without the leaft Violence, as has been obierved by Mattre-Jean, in his Maladies de l'Oeil, Cbap. xi. and by Dr. Petit, in the Memoires. de l'Academie Royale, anno 1730 ; who therefore make no Scruple to affirm, that of all the Parts of our Body, the Cryftalline is the only one that has no Continuity with the Parts adjacent, by any Fibre, Blood-veffel or Nerve: And this Opinion is very much frengthened by a Paffage I find in Steno's Canis Carcbario. diffectum Caput. Cryfallini bunnoris propria tunica contenti (fays he, fpeaking of this Animal) Jiuffantia tritlex erat, intiona, contirum, centroque vicina loca occupans, dura, et ex lamellis compofita erat, que integra, cryfalli inftar, diaplianc apparebant, fecta verò, albe fimul ct. opace ervadebant; extima cryffallini jubftanitia, tunice proxima, aque infocr, diffluebat; reliqua, ut centriun inter et tunicam, mediun locum invenerat, fic etiam confifentice media crat, vifciditate

444 The Eye adapted to Diftances Book III.

fuâ gituten amulanis. Solidus globus vifco fuo circumdatus, liberè in aqua volvebatur. From thefe Words, it is plain, that the Author, who was one of the mof accurate Anatomifts of his Time, difcovered no Attachment of the Cryftalline to its Membrane or Caffule, which, had there been any, could not eafily have efcaped his Obfervation, where fo much Water furrounded the folid Cryftalline: And this will be ftill more evident, if we confider the following Paffage ; from which it appears that he had frequent Opportunities of repeating the like Obfervations. See his Diffectio Pifcis ex Camum genere; where, fpeaking of the Cryftline in one of thofe canine Fiflhes, he fays, Cryjfallini bumoris fubftantia triplex erat; media dura, et ex lamellis compofita; buic untlique adbarens alia multum glutinofa; tertia tunice proxima, omsino aquea, fed et hoc pifcibus aliis plurimis datum eft.

The famous Morgagni has alfo obferved, that there is Water in the Capfule of the Cryfalline, not only in Men, but in feveral other Creatures, Alverfor. vi. p.go.); and yet he takes no Notice of any Attachnent. But of all the Authors that have written on this Subject, Dr. Petit feems to have carried his Obfervations the fartheft; for he found this Water not only in the human Eyes, but in the Eyes of Dogs, Cats, Wolves, Hares, Rabbets,

Chap. III. by the Ligamentum Ciliare. 445

Rabbets, Sheep, Lambs, Calves, Oxen, Horfes, Turkies, Ducks, doc. but could never difcover the leaft Attachment, tho' he feems to have been at a good deal of Pains in fearching after it. See les Memoires de l' Academie Royale amm. 1730.

Had the Cryftalline any Continuity with its Capfule, it is probable, that Ruysch's fubtile Injections would have reached it; but we find he could never go further than its Membrane, and that only by pufhing forward the Blood in its Veffels by the ceraceous Matter, from which they became confpicuous, tho' the ceraceous Matter itfelf could never be made to enter them, (Ruysch. Thefaur. 2. locul. arc. 4.) Seeing then that the Cryftalline has no vifible Attachment or Communication with any Part of the Body, it can never receive into its Fibres any Blood or Spirits; and confequently it cannot be adapted to the Diftance of Objects by the Contraction of thofe Fibres.

If any body fhould afk me, How it is poffible for the Cryftalline to be nourifhed, without having fome Communication with the neighbouring Parts, from which it may derive Blood and Spirits? To this I anfwer, That I fee no Abfurdity in giving it a Kind of vegetative Life, and in fuppofing that it draws Nourifhment from the Water in which it fluctuates,

446 The Eye adapted to Diftances Book III,

fluctuates, as Maitre-Jean and Petit have fuppofed; and this may be the Reafon, whence it is that when this Water is wanting, as fometimes happens in morbid Cafes, the Cryfalline becomes dry and opaque, much like what it is when taken out of the Eye and dried, as Brisseau, Morgagni and Petit have obferved.
§19. The laft Opinion, concerning the Change made in our Eyes, is what we embrace, and confifts in the Motion of the Cryfalline, whereby the Diftance betwixt it and the Retina is increafed or diminifhed according to the different Diftances of Objects; fo that at whatever Diftance Objects are placed, the Retina is always at a due focal Diftance behind the Cryftalline.
§ 20. Now, the Ligamentum Ciliare is an Organ whofe Structure and Difpofition excellently qualify it for changing the Situation of the Cryftalline, and removing it to a greater Diftance from the Retina, when Objects are too near us ; for when it contracts, it will not only draw the Cryftalline forwards, but it will alfo comprefs the vitreous Humour lying behind it; by which Compreffion it muft prefs upon the Cryfalline, and puifh it forwards farther, from the Retina. For underftanding which, let C (Plate V. Fig. 38.) be the Cryftalline, and let the curve lines ao, ao reprefent the

Chap. III. by the Ligamentum Ciliare. 447
Ligamentum Ciliare; it is eafy to fee; that when this Ligament contracts, it muft draw the Cryftalline forwards in the Direction of the right Lines aod, aod; by which means this Humour will be brought nearer the Fore-part of the Eye oo. But this is not all; for the Fibres, compofing this Ligament or mufcular Procefs, do not run in a ftreight Line, from their Origin in the Cloroides, to their Infertion in the Edge of the Cryftalline, but by their Inflexion form a Hollow, behind which lies the vitreous Humour, as reprefented in the Figure; and therefore when they contract, they muft come nearer to the ftreight Lines $a 0, a 0$, by which means this Concavity will become lefs, and the vitreous Humour will be comprefsed; which therefore muft, by preffing on the Back of the Cryftalline, pufh it forwards farther from the Retina, when we look at near Objects, its Axis all the while remaining the fame; and the Cryftalline being moved forwards, mult at the fame time prefs the aqueous Humour againft the Cornea; by which Means this Membrane, which is flexible and yielding, will be rendered more convex for enabling us fill the better to fee near Objects diftinetly.
§ 21. It has been objected to our feeing diftinctly at different Diftances by means of the Motion of the Cryftalline, that, upon Computation,

448 The Eye alapted to Difances Book III.
Computation, this Motion is found infufficient to procure diftinct Vifion at the Diftances to which the Eye reaches: But as all fuch Computations - are founded upon the Meafures of the feveral Parts of the Eye, their Diftances from each other, and the refractive Power of the Humours, none of which it is poffible to afcertain with that Exactnefs that may be depended on; this Objection is but of little Weight: And befides, fuppofing that the Diftance betwixt the Cryftalline and Retina could not be fufficiently increafed by the Motion of the Cryftalline for enabling us to fee diftinctly at the leaft Diftance the Eye can reach to, yet what is wanting in this will be fupplied by the greater Convexity of the Cornea; for when the Cryftalline is brought forward, its Diftance from the Retina is not only increafed, but, as has been already noticed, the Cornea itfelf is alfo rendered more Convex; which has not been attended to by the Authors of this Objection.
§ 22. Plempius afcribes the Difcovery of the Ufe of this Ligament, in changing the Conformation of our Eyes, to the celebrated Philofopher and Mathematician Johannes Keplerus, of which Anatomifts need not be afhamed, it being only from mathematical Principles that the Neceffity of any fuch Change was ever difcovered. But in explain-

Chap. III. by the Ligamentum Ciliare. 449
ing this Matter, not only Kepler, but PlemPIUS himfelf feems to have fallen into a Miftake; for they fuppofe that, by the Contraction of this Procefs, the Sides of the Eye are drawn inwards towards the Cryftalline, by which means the Eye is elongated, and the Retina is pufhed back to a greater Diftance behind the Cryftalline when Objects are near; which is repugnant to the abovenoticed Situation of this Procefs, as well as to the Hardnefs and Inflexibility of the Sclerotis of feveral Animals. See Plempius Ophthalmogr. lib. iii. cap. 9.
§ 23. M. de la Hire denies this Motion of the Cryftalline, as well as all other Changes made in the Conformation of the Eye ; all whofe Arguments have already been examined at fome length, excepting thofe taken from the Structure of the Parts; which now we muft confider, in fo far as they have any Relation to this above defcribed Motion of the Cryftalline.

This Author maintains, that it is impoffible the Cryftalline can change its Situation, becaufe the ciliary Ligament is not mufcular, and confequently has no Power of Contraction ; and of this Opinion are likewife a great many Anatomifts, and in particular Hovius; but it appears that all of them have beenled into this Miftake, by an unjuft Notion they have entertained about the Colour of Mufcles. Every Vol.I. L 11 body

450 The Eye adapted to Diftances. Book III.
body knows that our Mufcles are generally of a red Colour ; but it does not from thence follow, that what is not red is not mufculous: The mufular Fibres of the Guts and Stomach have fcarce any thing of Rednefs in their Colour ; and it is alfo certain that the Pupil does contract and dilate itfelf according as Objects are more or lefs luminous, and yet none of the Fibres which perform that Action are in the leaft red ; whence it follows, that the Fibres of the Ligamentum Ciliare are not to be deprived of a Power of Contraction, becaufe of a Colour different from what generally obtains in other Mufcles; nor are we to be furprized that fo many accurate Anatomifts, after a careful Examination of this Procefs, have not fcrupled to affirm it to be truly mufcular.

The End of the Firft Volume.

ERRATA.

Pag. 18. line 28. After longer, add, as Galen in his roth Book, De ufu Partium, has alfo obferved.
p. 38. 1. 21 . For Figure, read Fiffure.
p. 44. 1. 6. For Vaxheyen, read Verheyen.
p. 55.1. 22. For of, read or.
p. 65. 1. 5. For any, read only.
p. 69 1. 1. For Eye, read Eyes.
p. 83. At the Paragrapt, prefix $\$ 4$.
p. 84. At Second ditto, prefix §5.
p. 88. 1. 16. For it is, read is it.
p. 134.1. 2. For $\frac{17}{1}$, read $\mathbf{I}_{\frac{1}{9}} \frac{7}{9}$

1. 3. For $\mathrm{C}_{\mathrm{I}}^{2} \frac{2}{9}$, read $9_{1}^{2} \frac{2}{9}$
p. 136. 1.6. For nor, read not.
p. 195. 1. 26. For a Board, read abroad.
p. 215.1. 9. For Humor, read Humore.
p. 247. 1. 12. For of, read or.
p, 248. At the fecond Paragraph, prefix $\$ 3$.

1. 13. dele the.
p. 327.1 .23 . For $78 \frac{1}{2}$, read $77 \frac{1}{2}$
p. 350. 1. 6. For fell, read feel.
p. 353. 1. 21. For aboard, read abroad.
p. 377.1, 16. For Glafs, read the Glafs.
1. 17. For the Glafs, read, Glafs.
p. 389. 1. 2. For as, read at.
p. 406.1. 7. After then, add it.
p. 425. before line 3. add § 9 .
p. 428. before line 4. add § 12.

475
P83
V. 1

RARE BOOKS DEPARTMENT

[^0]: Yoi. I.
 G g
 confequently

[^1]: Vol. I.
 Nin

